10 research outputs found

    Solution-processed quantum-dot light-emitting diodes combining ultrahigh operational stability, shelf stability, and luminance

    No full text
    Abstract The shelf-stability issue, originating from the ZnO-induced positive aging effect, poses a significant challenge to industrializing the display technology based on solution-processed quantum-dot light-emitting diodes (QLEDs). Currently, none of the proposed solutions can simultaneously inhibit exciton quenching caused by the ZnO-based electron-transporting layer (ETL) and retain other advantages of ZnO. Here in this work, we propose a bilayer design of ETL in which a buffer layer assembled of SnO2 nanoparticles (NPs) suppresses the QD-ETL exciton quenching and tunes charge balance while ZnO NPs provide high electron conductivity. As a result, the bottom-emitting QLED combining capped ZnO and SnO2 buffer exhibit a maximum luminance over 100,000 cd m−2 and a T 95 operational lifetime averaging 6200 h at 1000 cd m−2 on the premise of entirely inhibiting positive aging

    Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling

    No full text
    The surface localized charges in colloidal quantum dots induce a degradation that limits the electroluminescence performance. Here, Chen et al. propose quantum dots with monmonotonically-graded core/shell/shell structures to boost the device’s performance by reducing the surface-bulk coupling

    High efficiency and stability of ink-jet printed quantum dot light emitting diodes

    No full text
    The low efficiency and fast degradation of devices from ink-jet printing process hinders the application of quantum dot light emitting diodes on next generation displays. Passivating the trap states caused by both anion and cation under-coordinated sites on the quantum dot surface with proper ligands for ink-jet printing processing reminds a problem. Here we show, by adapting the idea of dual ionic passivation of quantum dots, ink-jet printed quantum dot light emitting diodes with an external quantum efficiency over 16% and half lifetime of more than 1,721,000hours were reported for the first time. The liquid phase exchange of ligands fulfills the requirements of ink-jet printing processing for possible mass production. And the performance from ink-jet printed quantum dot light emitting diodes truly opens the gate of quantum dot light emitting diode application for industry. Designing efficient and scalable quantum dot LEDs meeting industrial requirements remains a challenge. Here, the authors, by leveraging the liquid phase exchange of d-MX2 ligands, present printed quantum dot LEDs with external quantum efficiency over 16% and half lifetime of more than 1,721,000hours
    corecore