5,583 research outputs found

    Gas Enrichment at Liquid-Wall Interfaces

    Get PDF
    Molecular dynamics simulations of Lennard-Jones systems are performed to study the effects of dissolved gas on liquid-wall and liquid-gas interfaces. Gas enrichment at walls is observed which for hydrophobic walls can exceed more than two orders of magnitude when compared to the gas density in the bulk liquid. As a consequence, the liquid structure close to the wall is considerably modified, leading to an enhanced wall slip. At liquid-gas interfaces gas enrichment is found which reduces the surface tension.Comment: main changes compared to version 1: flow simulations are included as well as different types of gase

    Scaling and Dissipation in the GOY Shell Model

    Get PDF
    This is a paper about multi-fractal scaling and dissipation in a shell model of turbulence, called the GOY model. This set of equations describes a one dimensional cascade of energy towards higher wave vectors. When the model is chaotic, the high-wave-vector velocity is a product of roughly independent multipliers, one for each logarithmic momentum shell. The appropriate tool for studying the multifractal properties of this model is shown to be the energy current on each shell rather than the velocity on each shell. Using this quantity, one can obtain better measurements of the deviations from Kolmogorov scaling (in the GOY dynamics) than were available up to now. These deviations are seen to depend upon the details of inertial-range structure of the model and hence are {\em not} universal. However, once the conserved quantities of the model are fixed to have the same scaling structure as energy and helicity, these deviations seem to depend only weakly upon the scale parameter of the model. We analyze the connection between multifractality in the velocity distribution and multifractality in the dissipation. Our arguments suggest that the connection is universal for models of this character, but the model has a different behavior from that of real turbulence. We also predict the scaling behavior of time correlations of shell-velocities, of the dissipation,Comment: Revised Versio

    Energy spectra in turbulent bubbly flows

    Get PDF
    We conduct experiments in a turbulent bubbly flow to study the nature of the transition between the classical −-5/3 energy spectrum scaling for a single-phase turbulent flow and the −-3 scaling for a swarm of bubbles rising in a quiescent liquid and of bubble-dominated turbulence. The bubblance parameter, which measures the ratio of the bubble-induced kinetic energy to the kinetic energy induced by the turbulent liquid fluctuations before bubble injection, is often used to characterise the bubbly flow. We vary the bubblance parameter from b=∞b = \infty (pseudo-turbulence) to b=0b = 0 (single-phase flow) over 2-3 orders of magnitude (0.01−50.01 - 5) to study its effect on the turbulent energy spectrum and liquid velocity fluctuations. The probability density functions (PDFs) of the liquid velocity fluctuations show deviations from the Gaussian profile for b>0b > 0, i.e. when bubbles are present in the system. The PDFs are asymmetric with higher probability in the positive tails. The energy spectra are found to follow the −-3 scaling at length scales smaller than the size of the bubbles for bubbly flows. This −-3 spectrum scaling holds not only in the well-established case of pseudo-turbulence, but surprisingly in all cases where bubbles are present in the system (b>0b > 0). Therefore, it is a generic feature of turbulent bubbly flows, and the bubblance parameter is probably not a suitable parameter to characterise the energy spectrum in bubbly turbulent flows. The physical reason is that the energy input by the bubbles passes over only to higher wave numbers, and the energy production due to the bubbles can be directly balanced by the viscous dissipation in the bubble wakes as suggested by Lance &\& Bataille (1991). In addition, we provide an alternative explanation by balancing the energy production of the bubbles with viscous dissipation in the Fourier space.Comment: J. Fluid Mech. (in press

    Three-dimensional Lagrangian Voronoi analysis for clustering of particles and bubbles in turbulence

    Get PDF
    Three-dimensional Voronoi analysis is used to quantify the clustering of inertial particles in homogeneous isotropic turbulence using data from numerics and experiments. We study the clustering behavior at different density ratios and particle response times (i.e. Stokes numbers St). The Probability Density Functions (PDFs) of the Voronoi cell volumes of light and heavy particles show a different behavior from that of randomly distributed particles -i.e. fluid tracers-implying that clustering is present. The standard deviation of the PDF normalized by that of randomly distributed particles is used to quantify the clustering. Light particles show maximum clustering for St around 1-2. The results are consistent with previous investigations employing other approaches to quantify the clustering. We also present the joint PDFs of enstrophy and Voronoi volumes and their Lagrangian autocorrelations. The small Voronoi volumes of light particles correspond to regions of higher enstrophy than those of heavy particles, indicating that light particles cluster in higher vorticity regions. The Lagrangian temporal autocorrelation function of Voronoi volumes shows that the clustering of light particles lasts much longer than that of heavy or neutrally buoyant particles. Due to inertial effects, the Lagrangian autocorrelation time-scale of clustered light particles is even longer than that of the enstrophy of the flow itself.Comment: J. Fluid Mech. 201

    The clustering morphology of freely rising deformable bubbles

    Get PDF
    We investigate the clustering morphology of a swarm of freely rising deformable bubbles. A three-dimensional Vorono\"i analysis enables us to quantitatively distinguish between two typical clustering configurations: preferential clustering and a grid-like structure. The bubble data is obtained from direct numerical simulations (DNS) using the front-tracking method. It is found that the bubble deformation, represented by the aspect ratio \chi, plays a significant role in determining which type of clustering is realized: Nearly spherical bubbles with \chi <~ 1.015 form a grid-like structure, while more deformed bubbles show preferential clustering. Remarkably, this criteria for the clustering morphology holds for different diameters of the bubbles, surface tension, and viscosity of the liquid in the studied parameter regime. The mechanism of this clustering behavior is connected to the amount of vorticity generated at the bubble surfaces.Comment: 10 pages, 5 figure

    Whole-genome data reveal the complex history of a diverse ecological community

    Get PDF
    How widespread ecological communities assemble remains a key question in ecology. Trophic interactions between widespread species may reflect a shared population history or ecological fitting of local pools of species with very different population histories. Which scenario applies is central to the stability of trophic associations and the potential for coevolution between species. Here we show how alternative community assembly hypotheses can be discriminated using whole-genome data for component species and provide a likelihood framework that overcomes current limitations in formal comparison of multispecies histories. We illustrate our approach by inferring the assembly history of a Western Palearctic community of insect herbivores and parasitoid natural enemies, trophic groups that together comprise 50% of terrestrial species. We reject models of codispersal from a shared origin and of delayed enemy pursuit of their herbivore hosts, arguing against herbivore attainment of “enemy-free space.” The community-wide distribution of species expansion times is also incompatible with a random, neutral model of assembly. Instead, we reveal a complex assembly history of single- and multispecies range expansions through the Pleistocene from different directions and over a range of timescales. Our results suggest substantial turnover in species associations and argue against tight coevolution in this system. The approach we illustrate is widely applicable to natural communities of nonmodel species and makes it possible to reveal the historical backdrop against which natural selection acts

    Characterization of [3H][^3H]Phenobarbital Binding to Rat Brain Membranes

    Get PDF
    The binding of [3H][^3H]phenobarbital to rat brain membranes was studied in order to determine its characteristics and specificity. The binding reaction was rapid and occurred at sites of low affinity. (Kd=700ΌM)(K_d = 700 ΌM) and very high density (Bmax=2.7nmoll/mgprotein)(B_{max} = 2.7 nmoll/mg protein). It was unaffected by temperature changes from O°C to 95°C and was maximal at pH 5. Detergents in low concentrations markedly decreased the binding, apparently without solubilizing the binding sites. It is concluded that the binding of [3H][^3H] phenobarbital is a rather non-specific interaction with the plasma membrane

    The evolution of energy in flow driven by rising bubbles

    Get PDF
    We investigate by direct numerical simulations the flow that rising bubbles cause in an originally quiescent fluid. We employ the Eulerian-Lagrangian method with two-way coupling and periodic boundary conditions. In order to be able to treat up to 288000 bubbles, the following approximations and simplifications had to be introduced: (i) The bubbles were treated as point-particles, thus (ii) disregarding the near-field interactions among them, and (iii) effective force models for the lift and the drag forces were used. In particular, the lift coefficient was assumed to be 1/2, independent of the bubble Reynolds number and the local flow field. The results suggest that large scale motions are generated, owing to an inverse energy cascade from the small to the large scales. However, as the Taylor-Reynolds number is only in the range of 1, the corresponding scaling of the energy spectrum with an exponent of -5/3 cannot develop over a pronounced range. In the long term, the property of local energy transfer, characteristic of real turbulence, is lost and the input of energy equals the viscous dissipation at all scales. Due to the lack of strong vortices the bubbles spread rather uniformly in the flow. The mechanism for uniform spreading is as follows: Rising bubbles induce a velocity field behind them that acts on the following bubbles. Owing to the shear, those bubbles experience a lift force which make them spread to the left or right, thus preventing the formation of vertical bubble clusters and therefore of efficient forcing. Indeed, when the lift is artifically put to zero in the simulations, the flow is forced much more efficiently and a more pronounced energy accumulates at large scales is achieved.Comment: 9 pages, 7 figure
    • 

    corecore