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This is a paper about multifractal scaling and dissipation in a shell model of turbulence, called the 
Gledzer-Ohkitani-Yamada (GOY) model. This set of equations describes a one-dimensional 
cascade of energy towards higher wave vectors. When the model is chaotic, the high-wave-vector 
velocity is a product of roughly independent multipliers, one for each logarithmic momentum shell. 
The appropriate tool for studying the multifractal properties of this model is shown to be the energy 
flux on each shell rather than the velocity on each shell. Using this quantity, one can obtain better 
measurements of the deviations from Kolmogorov scaling (in the GOY dynamics) than were 
available up to now. These deviations are seen to depend upon the details of inertial-range structure 
of the model and hence are not universal. However, once the conserved quantities of the model are 
fixed to have the same scaling structure as energy and helicity, these deviations seem to depend only 
weakly upon the scale parameter of the model. The connection between multifractality in the 
velocity distribution and multifractality in the dissipation is analyzed. Arguments suggest that the 
connection is universal for models of this character, but the model has a different behavior from that 
of real turbulence. Also, the scaling behavior of time correlations of shell velocities, of the 
dissipation, and of Lyapunov indices are predicted. These scaling arguments can be carried over, 
with little change, to multifractal models of real turbulence. 0 1995 American Institute of Physics. 

1. INTRODUCTION 

The recent literature contains two alternative views of 
the nature of well-developed turbulence. In one view, the 
simple scaling caught by the K411 paper is the asymptotic 
truth which holds in the limit of high Reynolds numbers. 
Then the experimental facts, some of which seems to support 
a more complicated scaling, are described in terms of non- 
asymptotic corrections to scaIing.“-9 In the other view” the 
experiments are better understood and described as a result 
of a multifractal picture”-13 in which cascades produce 
anomalously large fluctuations in the velocity fields. These 
two views can both be supported by the experimental 
evidence.14-lg There are theoretical arguments for both. 

It would be ideal to distinguish these two possibilities by 
direct numerical simulations of Navier-Stokes dynamics. 
Unfortunately, the current computing power sets an upper 
limit on the Reynolds number. So far, the highest Taylor 
Reynolds number is on the order of 200,m0.21 which is insuf- 
ficient to make the distinction. Consequently, many people 
have worked on simplified approaches which might offer 
some understanding of Navier-Stokes dynamics. 

One approach, called the reduced wave vector set ap- 
proximations (REWA), approximates the Navier-Stokes dy- 
namics by representing the full velocity field on a set of 
wave vectors which gets more and more thinned out for 
higher wave vectors. For detailed discussions of the method 
and the results we refer to Refs. 22-24, 2, and 3. 
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Earlier, Gledze? introduced another, and simpler repre- 
sentation of Navier-Stokes dynamics in which the velocities 
are placed on a one-dimensional array of wave vectors. Each 
successive new velocity falls in a new shell in k space in 
which the wave vector is increased by a factor of X so that 
the nth shell has k,=k,X”. In the version of the mode1’6-30 
used here and referred to as the GOY model, each shell is 
described by a single complex variable, the complex velocity 
u,, . 

The COY model shows at least two qualitatively differ- 
ent kinds of behavior.31 In one range of parameters, the sys- 
tem relaxes to a time-independent state in which the velocity 
decays (apart from boundary corrections) with wave vector 
according to the predictions of K41. However, for other pa- 
rameter values, the system has a long-term behavior which 
includes stochastic fluctuations in the velocity. The basic sta- 
tistical variable is the ratio of the velocity fluctuations in 
neighboring shells. If this multiplier fluctuates locally, there 
cannot be any locking of the correlations among the fluctua- 
tions in far-distant shells. There is no way that independent 
short-range finite strength interactions can, in one dimension, 
be translated into infinitely strong long-range correlations. 
(,The argument for this special behavior of one-dimensional 
systems was originally given by Landau3’ in the context of 
phase transition problems. Of course in higher dimensions 
short-range interactions can indeed produce long-range cor- 
relations via phase transitions, see below.) The argument 
about relatively weak correlations in one dimension was first 
applied to the GOY model by Benzi, Biferale, and Parisi3’ 
(hereafter referred to as BBP). They argued, whenever there 
are any fluctuations in the long time dynamics, the GOY 
model necessarily develops very considerable fluctuations in 
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the ratio of velocities in far-distant shells. As a result, the 
velocities will show a multifractal behavior in the inertial 
range and there will be correlations among far distant 
she11s.33134Xz~30,29,3s In contrast, REWA has its dynamics on a 

I 
higher dimensional k lattice. The dynamics can then possibly 

I 
develop long-range correlations among velocities with differ- 
ent k vectors. These correlations may damp down the largest 
fluctuations in the velocity amplitudes and produce the ob- 
served asymptotic behavior24’3 which is fractal (K41) rather 
than multifractal. 

Compared to REWA, the simpler GOY model offers the 
opportunity of a somehow easier analytic approach, and of 
course of less expensive numerics. REWA in turn offers the 
advantages of additional degrees of freedom and of an ap- 
parent extra closeness to Navier-Stokes. But, we cannot tell 
which approach comes closer to the truth of the full Navier- 
Stokes system. 

In this paper we aim for the more modest goal of finding 
some of the properties of the GOY model. Specifically we 
wish to (1) develop a more accurate numerical method of 
determining the scaling exponents of the multifractal spec- 
trum and thereby to better understand the spectrum of fluc- 
tuations of 1 U,,l ; (2) understand the role of conserved quan- 
tities, (3) examine whether the multifractal properties 
dependent upon the exact form of the dissipation and of the 
nonlinear term, (4) describe and verify a theory for time 
dependence of various quantities of the dissipation and 
thereby generate a scaling theory for the multifractal proper- 
ties of the dissipation, for velocity correlations, and for fluc- 
tuations in Lyapunov indices. 

In the next section of this paper, we describe the COY 
model and some of its major qualitative features. Section III 
is devoted to the properties of the velocity in the inertial 
range. We show how to get more accurate values of the mul- 
tifractal scaling exponents than were available up to now. We 
then see how the exponents depend upon the various param- 
eters of the model. In Sec. IV, we do some calculations re- 
lated to time-dependent correlations in the model: Subsection 
one describes the relation between the multifractal properties 
of the dissipation and that of the velocity in the inertial 
range; the next estimates the order of magnitude of velocity 
correlations; and the last discusses fluctuations in the 
Lyapunov index for the model. 

II. THE GOY MODEL OF TURBULENCE 

The GOY model describes a one-dimensional cascade of 
energies among a set of complex velocities, U,, on a one- 
dimensional set of wave vectors: 

k,=koX”, n= 1,2 ,..., N. (1) 
The model is a system of ODE with the following structure: 

d 
z U,=-DD.+F,+iC,. ca 

Here D, stands for a dissipation term, F, stands for a forcing 
term which is only set on low-n shells, and C, stands for 
nonlinear couplings among different shells. The last term is 
crucial to inducing energy cascades in the model. 

We shall make the same choices for the three terms as 
have been used in several previous turbulence 
stUdies.25-~‘30,Z9,31 

D,=vk&,, (3) 

F,=fk,,, (4) 

C,=ak,U~,1U~,2fbk,-lU~-~U~~~ 

+ck,-,U;-1U;-2. (5) 

They are intended to capture some of the features in hydro- 
dynamics: viscous dissipation (later on, we will also allow 
for hyperviscosity D,= uk$J, and study the behavior at 
+=4,6) of energy, external forcing on a large scale, and qua- 
dratic interaction among different modes with strength pro- 
portional to k. Furthermore, we impose rigid boundary con- 
ditions on U, in which the only nonzero U,,‘S are those for 
which n is within the range [ l,N]. The constants, a, b, c, f, 
X, and k, define the model. Throughout this paper we make 
the conventional choices 

ko=2-4, (64 

f=ql+i)*10-3, (6b) 

a= 1, (64 

b=-e, (64 

c--1+e. 64 

The standard case which we will use for comparison with the 
results in the literature has 

x=2, (74 

v= 10-7, VW 

e= l/2, (7c) 

N=22. (74 

Such a system is similar to the three-dimensional 
Navier-Stokes dynamics in four respects: 

(1) In the inviscid and nonforcing limit, there are two 
conserved quantities= which can be identified with the 
total energy Jlu(x)12dx/2 and the helicity s u. V Xu dx of 
the exact problem. 
(2) The cascade term conserves the phase volume, de- 
fined as the total volume in the N-dimensional complex 
velocity space. The result is a direct consequence of the 
statement that 

/ 

W 

(3) The system can reach a steady state in which it be- 
haves chaotically. Since the system is forced at large 
scale and the dissipation occurs mostly at small scales, 
the system must cascade energy from large scales to 
smaller ones. 
(4) The multifractal behavior shows some resemblance 
to the behavior seen experimentally. 
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A general discussion of conserved quantities can be 
found in Gledzer’s work.s We simply notice that the cascade 
terms give rises to the expression for the general conserved 
quantity: 

w= 2 1 u,2~2%‘1, (9) 
I, 

whenever z satisfies the quadratic equation 

O=a+bz+cz”. (10) 

We require one of the two conserved quantities to have the 
structure of the kinetic energy, i.e., z= 1: 

E==C IU,,12/2. 
II 

Then from Eq. (lo), we must take a + b + c = 0, as reflected 
in Eqs. (6c)-(6e). By adjusting the time scale, we can make 
a = 1. So the cascade terms of the model contain only two 
free parameters, which can be defined to be E and A. Now the 
energy conservation law takes the form 

f jUnj2= - “k~lU,,12+~[fU,*~~,4]+Jn-1-Jn. (12) 

Here the different terms refer respectively to the dissipation, 
to the forcing, and to a discrete divergence of an energy flux. 
The cascade produces the fluxes, which are defined in terms 
of the triple products: 

A,r=k,,-1U,,-lU,,U,,+l. (13) 

Then the energy flux from the nth mode to the PZ + 1 th mode 
is 

.I,~=;‘J[-;.A,,+l-(l-~)A,~]. (14) 

We therefore can picture a steady state of the dynamical 
system as a cascade of energy from large “eddies” to smaller 
ones, where the energy is dissipated through viscous diffu- 
sion. It is in this sense that we say the dynamics may mimic 
real turbulence. 

Given an e, the other conserved quantity is then deter- 
mined by Eq. (9) in terms of the other solution of Eq. (lo), 
z= l/(.5- 1) as 

H=C IU,l2(E-l)-“. (151 
,I 

The corresponding conservation law takes the form of 

g (e- l)-‘*lu,*12 

=-yk~lU,212(~-1)-‘t~~[fU,TSn.4](~-l)-n W 

+~lr-l--~,,~ 

where 

L,,=(E-11)-‘z3[(A,~-A,+1j] (17) 

is the relevant flux from the (n- l)th mode to the nth mode. 
The inviscid three-dimensional hydrodynamics have two 

conserved quantities quadratic in velocity: the total energy 

and the helicity; the latter is a spatial integral of velocity 
dotted into vorticity. In our shell model, the closest analog to 
helicity is Z,t( - l)nk,l U,12. Whenever 1/(1-e) is equal to 
X, the helicity defined in this way agrees with our second 
conserved quantity H. In particular, this equality holds for 
the conventional choice of parameters (6) with e=OS. 

We remark that the second conserved quantity plays an 
essential role in the theories36,3F4,37 which use corrections to 
scaling to explain why K41 does not fully fit experimental 
turbulence data. In their approach, the leading correction to 
scaling is the result of an additive correction to the asymp- 
totic scaling. 

The structure of the cascade part of the equation of mo- 
tion is particularly interesting.52 This part has the form 

C,=c J 
SE 6H 

-- 
WP 

nm,P au, “UP * (18) 

Here E and H are our two conserved quantities and J is 
proportional to a completely antisymmetric function of its 
three indices. The equation of motion generated from Eq. 
(18) 

f u,=W,, $1 

with 

{A,B}=i c Jn,m,p -& ;g+.... 
~.li?.p n m  P 

(19b) 

looks as if it might be Hamiltonian in character in that it is 
generated by an antisymmetrical bracket structure.5” The 
form given by Eq. (19b) suggests that what we are seeing is 
possibly a Lie-Poisson System.38 However, detailed investi- 
gations by Mungan5’ have shown that this bracket, in par- 
ticular, and any other possible Lie-Poisson-like bracket gen- 
erating the equations of motion fails to satisfy the Jacobi 
identity, so that the brackets in question are not really Pois- 
son brackets. 

The numerical integration of the shell equation (2) was 
done using the “lsode” software package,39 a differential 
equation solver that handles the stiffness of the equations 
efficiently. We benchmark our code by running a well- 
studied case of Eq. (7j,29T28,26 in which the total number of 
shells is 22. Our results agree with the previous ones. The 
satisfaction of the balance equations (12) and (16) for the 
stationary state provides an extra check for our numerics. 

111. WIGGLES IN THE AVERAGE OF lU,l 

A. Static solutions 

Biferale et aZ.31 studied two classes of solutions to the 
GOY model. They observed numerically (for h=2 and 
v=10d7) that when 0<&0.3843, the system reaches a 
stable static solution of the Kolmogorov type. On the other 
hand, when 0.3953<&2 their analysis shows a chaotic and 
time-dependent behavior. Much of the previous analysis of 
the GOY model has been done for ~=0.5. Since the phase 
transition at e-O.4 apparently has the character of a continu- 
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ous transition, and since ~=0.5 is reasonably close to 0.4, we 
should expect many of the qualitative features of the static 
state to manifest themselves for ~=0.5. 

To understand the structure of the nonlinear interaction, 
Biferale et aL31 analyzed the static solutions in the inviscid 
and homogeneous GOY model to obtain an iteration map for 
the ratios of velocity. Here we offer a slightly different ap- 
proach which gives an analytic solution for the ratios in the 
inhomogeneous and inviscid case. Let us first consider the 
case in which v=O and f = 0. For n>4, one sets the cascade 
operator of Eq. (5) equal to- zero and finds a linear difference 
equation for the product of three velocities, A,, , defined by 
equation (13): 

A ,t+l-~A,-(l-~)A,~l=O. cm 

This equation admits a general solution of the form: 

A,=A+B(e- l)n, iW 
where A and B are each complex constants, related to the 
fluxes for energy and the other conserved quantity by 

J,=3[(6-2jA]=%(fU~), i22aj 

L,=J[(~-2)B]=!X(fU~)(~-1)-4. (22b) 

Notice that, in the static case, the ratios of Un’s can be ex- 
pressed in terms of the ratios of An’s, in particular, 

r,~UUn+31Un=An+21iXA~tl). (23) 

Rewriting Eq. (20) in terms of r, gives the ratio map ob- 
tained by Biferale et al. The general expression (21) permits 
two simple scaling solutions corresponding to B =0 and 
A ‘0, respectively. However, if A and B are both of order 
unity, then, as long as 0<~<2, the first scaling solution (B 
= 0) will always dominate for large iz. 

For the case B=O, AZO, we have 
L=k,-1Un-1UnUn+, =A, independent ofn, and rn= 1/X. 
Note that the velocity amplitudes show period three oscilla- 
tions superimposed on the classical k,1’3 falloff, i.e., 

1 

u,,k, 1’3 for n=O (mod 3), 

u,,= uIk,‘13 for iz= 1 (mod 3), (24) 
u,k, Ii3 for n=2 (mod 3). 

The period three oscillations will be important in what fol- 
lows. 

For the second scaling solution (A = 0, B # 0) we have 
r,2=(e- 1)/X. In particular for X=1/(1-e) (e.g., X=2, ~=l/ 
2), where L, can be considered as helicity flux, this results in 
IUlllmktT2/3 (Refs. 36, 3, and 4), again, up to a period three. 

Let us now allow for the inhomogeneity in the difference 
equations (20) by including the forcing term f UT S,, , but 
still neglecting viscosity. In the limit as viscosity goes to 
zero, U3 also goes to zero. Consequently, for the time- 
independent situation, we find A,=0 and then, 
A/B=(e- l)-“. In this way, we derive 

TABLE I. The r, from our numerical calculation, compared with the ex- 
pression (25) when e=O.3 and ~0.5. In the latter case, we show the time 
averaged velocities. Note that the same alternation between high and low 
values occurs in al1 four columns. 

n 

4 
5 
6 
7 
8 
9 

10 
11 

Numerics Eq. (25) Numerics 3. (2% 
e=0.3 c=o.3 e=o.5 e=os 

0.150 00 0.150 00 0.14 0.14 
1.316 64 1.316 67 1.35 1.10 
0.282 91 0.28291 0.27 0.36 
0.768 48 0.76857 0.78 0.59 
0.377 66 0.377 70 0.37 0.46 
0.613 21 0.613 33 0.62 0.52 
0.434 83 0.43532 0.43 0.48 
0.55055 0.551 10 0.55 0.50 

This expression for rn has an oscillatory behavior for n in the 
inertial range whenever ~(1. Note that this solution is deter- 
mined by our choices of boundary conditions and the stirring 
mechanism. 

In Table I we show the comparison of the numerical 
results and the analytical expression (25) for r,, in the inertial 
range when ~=0.3 (static solution) and ~=0.5 (chaotic solu- 
tion where we define r, = ( ITJ,,+~)/( U,)), respectively. In the 
former case, the agreement between the numerics and the 
theory is very good, with small deviations resulting from 
neglecting the viscous term in (25). In the latter case, we 
notice that although the values do not match closely, never- 
theless the static theory [from which we derived (25)] de- 
scribes correctly the oscillatory behavior of r, . This suggests 
that some of the quantities in the static solutions may well 
reflect the properties of chaotic solutions. 

B. Velocities, triple products, and fluxes 

Previous works”8-3” studied moments of the U,‘s: 

s,,q=(IUn14)~k;r? CN 

Numerically, we observe that the scaling of the Un’s exhib- 
its, superimposed on the overall power law scaling, the pe- 
riod three oscillations which have been reported earlier by 
Pisarenko et aLz9 The phenomenon is reminiscent of and 
probably has the same origin [cf. Eq. (24)] as the period 
three oscillations in the static Kolmogorov state. These os- 
cillations are shown in Fig. 1 for two cases with different 
forms of dissipation: a normal viscosity case (0,~ vk:U,) 
versus a hyperviscosity case (D,= vk:U,). Oscillations are 
present in both cases, but much more pronounced in the lat- 
ter situation. 

We could improve our scaling analysis if we did not 
have the period three oscillation which confuses the pictures 
of power law decay. In the static case a product of the form 
(S,,- l,qSn,$n+ l,,) L’3 would not show any oscillation. To 
verify that this result extends to the chaotic situation, we 
plotted (%l,qSn,q%+l,q) li3. Indeed, the oscillations disap- 
pear. 

The period three oscillations are responsible for the large 
uncertainties in measuring the scaling exponents. This uncer- 
tainty can be eliminated by extending our analysis of the 
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I I I I I I 

,l 6 s II) 1 ‘? - 14 16 18 

shell numl~er 

FIG. 1. Elimination of period three oscillations. We show three curves plot- 
ted against shell number II. ‘Iwo are for .s,,r = (I U,*l) : A plot for the normal 
viscosity case (D,,= vk$J,, with 1$=2) and another for the hyperviscosity 
case (+=4). Both of these show period-three oscillations. The remaining 
curve plots S,,r for the hyperviscosity case and shows no period three os- 
cillations. In each case time averages are taken over 15000 large eddy 
turnover times, the number of shells is 22. One curve is for our standard 
model parameters, the hyperviscosity cases have v= 10-l’. 

static state in the previous,, section. We first observe that re- 
lations similar to (20), (21), and (22b) hold .for J(A,), and 
we obtain 

(27) 

We are then motivated to study the scaling of the triple mo- 
ments 

s ,~,q-(IJ[U,,-IU,*~,,+111q'3)~~~~~, cw 

which are free of period three oscillations. As one can see 
from Fig. 2, these quantities do show a cleaner scaling form 
than the s,,,~. 

However, the oscillations at small IZ still remain a prob- 
lem. We then make use of the analog to the Kolmogorov 
structure equation33 

(J,,)=-J((A,,+~)+(~-E)(A,,))=~~~U~*). (29) 

In the inertial range, J,, should be independent of n. Equation 
(29) suggests that we could eliminate small-rt oscillations by 
studying the scaling of 

l--E q/3 -9 ‘“n,q= (1 [ 3 ~,r~,~+l~I,+z+ h i 1 un-lUdJn+l 2 II ) 
which, in mean-field approximation, scales as 

3 w,,,qmk,;q’3. (31) 

Expression (31) has the same scaling behavior as S,l,q, but is 
free from the oscillation for small n in the inertial range. 

-1 

-2 

-3 

4- \ 
r \ 

CL, 

. . 

4 6 8 10 12 14 

shell number 
16 

I I I I I I I 
-” . .._.._ 

4 6 8 10 12 14 16 18 

shell number 

FIG. 2. Different kinds of scaling analyses with increasing accuracy: s, 
which is the magnitude of the velocity, S which is a cube root of the imagi- 
nary part of a product of three velocities, and X, which is the cube root of 
the energy flux. The upper part shows curves drawn for q= 1; the lower part 
for q = 6. In both cases, Z gives the longest scaling range, and hence prob- 
ably the best estimates for scaling exponents. All curves are drawn for the 
standard parameter values. For comparison, K41 scaling is also shown. 

This sequence of operations enable us to reduce the sta- 
tistical error in Slq from 0.05 down to 0.005, and to increase 
the scaling region by perhaps one or two decades. The im- 
proved accuracy allows us to study the dependence of scal- 
ing exponents on various parameters in the model such as 4 
and the form of dissipation. [Note that Biferale et aL3* elimi- 
nated the period two oscillations by changing the boundary 
conditions of (2).] 

Note that the comparably large spectral strength s, for 
n= 17 (cf. Fig. l), i.e., just before the viscous range sets in, 
can be understood as a kind of bottleneck phenomenon.5P6 As 
pointed out in Ref. 6, the bottleneck energy pileup is more 
pronounced for the hyperviscous case, since viscosity sets in 
more rapidly. On the other hand, there cannot be a bottleneck 
energy pileup for the quantities S, and Z,, , because these 
quantities are based on the energy flux, which is constant in 
the inertial range. 

Phys. Fluids, Vol. 7, No. 3, March 1995 Kadanoff et al. 621 

Downloaded 18 Apr 2005 to 130.89.112.66. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



C. Multiscaling 

We have shown that by analyzing first s,,~, then S,,, , 
and finally En,*, the accuracy of the scaling exponents cq 
can be improved step by step. Besides the statistical errors 
reported above, the analytical expressions (27) and (29), 
which state &=l, help us to control the systematic error in 
the lp determination, since consequently Sri,,, and Z,,, 
should scale as mk,‘. The numerical value for the scaling 
exponent of Z,,, is indeed very close to 1, e.g., &=l.OOS. 
We choose the averaging time for each simulation by de- 
manding that s,,*, S,,, , and C,Z,, have all settled down to 
their long-term value. This stability is ensured by comparing 
successive runs, for each of which the averaging time of 
15 000 large eddy turnover times turns out to be more than 
sufficient for N= 22. The inertial range is determined by the 
condition that 5s is very close to 1. The numerical values for 
the deviations from Kolmogorov scaling && = & - 4/3 pre- 
sented below are measured from Z, 4. 

In order to compare the c%& for different parameters and 
to make claims on what they depend it is rather important to 
perform a very careful analysis of possible errors of our de- 
terminations. Besides unknown systematic errors there are 
three controllable source of errors: (i) The inertial range (and 
thus the fitting range for the straight line fit) is not unam- 
biguously determined by the condition “& very close to 1.” 
In practice, la is typically off from 1 by an amount of order 
+_0.005 for typical fits in the iz ranges from 4 to 15 or 5 to 
15. We attempt to minimize this source of error by dividing 
all measured & by &. Nevertheless, the I& slightly depend 
on the fitting range. (ii) There is some statistical error from 
the least-square fit of the data to a straight line. (iii) Results 
may differ from run to run, though each is over 15 OOO- 
50 000 large eddy turnover times. 

The errors from (i) and (ii) are about of the same size, 
whereas that from (iii) is clearly smaller. So, with error 
propagation, the total standard deviation is about 1.5 times as 
large as the statistical error (ii). These are the errors given in 
Figs. 3-5. 

To visualize the differences in the S[, for different sets 
of parameters, we found it convenient to plot SQ[q(q - 3)] 
rather than S& itself. The reason is that we want to eliminate 
the trivial agreement of the SC&, for q = 3 and q= 0, i.e., 
SJs = &$a = 0 for all kinds of parameter sets. 

Figure 3 shows the Slq and their errors-calculated and 
displayed as described above-for the standard GOY model 
parameters, X=2, ~=1/2. In the same figure we also give the 
a[, obtained from She and Leveque’s (SL)40 result 

0.08 1 I I I I I I I I 

c,=q/9+2 1 2 0 0 
l- 3 1 , (32) 

which is picked to be a simple phenomenological description 
of a situation in which one has an upper cutoff to the size of 
the turbulent fluctuations. Note that in any (finite time) nu- 
merical calculation such an upper bound will be given. Their 
result is in good agreement with experiment. For q>3 we 
find surprisingly good agreement also with the numerical 
GOY results at the standard parameter value. This means that 
the tails of the velocity probability distribution function 

0.06 I 

c= 0.5,x = 2 b4L-l -G 
q(q-3) E = 0.7,x = 2 I-I+ i 

I! S- 

0.04 
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FIG. 3. The deviations SJ, from Kolmogorov scaling are compared with 
one another for different parameter sets. We found it most instructive to plot 
&&/(q(q-3)) against q, to eliminate the trivial agreement at q= 0 and 
q=3. The dashed line is our numerical calculation, with the standard pa- 
rameter values. The solid line, which is impressively close to our numerical 
results for q>3, is the resuh (32) of She and Leveque.” The dotted line 
reports the shell results for another set of parameters, namely ~=0.7 and 
X=2. Note the pronounced disagreement with the SL result in this case. Yet 
when readjusting the parameters of that theory, good agreement can be 
achieved!l 

(PDF), corresponding to large fluctuations, are well de- 
scribed by the SL theory. For q<3 we find slightly worse 
agreement, i.e., the small fluctuations {peak of PDF) are not 
so well described by SL. 

However, the GOY-model values of SJ, are not univer- 
sal. They depend on the choice of E and A. For example, for 
~=0.3 and h=2, S& shows classical Kolmogorov scaling, 
see Biferale et a1.31 Our numerical analysis shows that even 
when we are in a chaotic situation, SJ, varies with X and E. 
As seen in Fig. 3, e.g., for ~=0.7, h=2 the scaling correc- 
tions are much larger than for the standard case. So why 

0.1 
. . 

-0.1 

1 2 3 4 5 6 7 

Q 

FIG. 4. S[, versus q for four sets of parameter values. Three parameter 
pairs (c,,X) lie on the curve (33) which defines the right value of the helicity. 
.These have X=10/3 and X=10/7 paired with their corresponding ds. The 
last value lies off the curve and has c=O.7 with X=2. Note how the vahres 
on the curve stand grouped together in comparison with the other one. 
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an approximate recursion relation relating different Spq is 
derived. These recursions can be solved if one knows the 
results at q= 1 and q=2. Using these values as adjustable 
parameters, we have derived all the integer index Slq. The 
parameters can be adjusted so that these results agree within 
our numerical errors with the GOY-model numerical solu- 
tions. Moveover, in Sec. IV of BBP, their theory is extended 
to give an approximate value of all SJ, from first principles. 
When we check this part of their theory, we find that there 
are severe differences between their solutions and the nu- 
merical calculations. We thus conclude that while the Sec. III 
results of BBP might be accurate, the Sec. IV results disagree 
with the facts. 

As suggested in the conclusion of BBP, correlations in 
the multiplicative process among the shells may play an im- 
portant role in order to obtain an accurate theoretical esti- 
mates of the scaling properties using the closure equations. 

FIG. 5. Scaling corrections Sfh for three different forms of viscous damp- 
ing. In each case, the damping term is D,= vk$Y, . The solid line shows the 
result for 95=2 and v=10e7, the dashed line for q5=4 with V= lo-“, and the 
dotted line for q%=h with v=S. IO-=. 

should the parameter values X=2, ~=0.5 be so special as to 
agree with She and Leveque’s formula? We recall our remark 
made in Sec. II about the second conserved quantity. As we 
have pointed out, given the above special parameters, the 
extra conserved quantity closely resembles helicity, which is 
indeed a conserved quantity in three-dimensional inviscid 
hydrodynamics. We also believe that specific forms of con- 
servation laws will have crucial influence on the outcome of 
statistical averages of the dynamical quantities. Conse- 
quently, we hypothesize that the scaling corrections should 
be invariant along a curve in the E-X plane, which conserves 
both energy and helicity. The curve defined by the above 
constraints takes the form 

1 A=- 
l--E’ (33) 

To test this hypothesis, we experiment numerically with sys- 
tems of different {E,X). In Fig. 4 we present the scaling cor- 
rections S& for three pairs of E and h “on the curve” (33). 
And as a comparison, we show a case for which the param- 
eter values are “off the curve:” (~=0.7, X=2). The cases on 
the curve are grouped closely together, while the case off the 
curve is much further away. Our numerical findings suggest 
that the scale factor h plays a relatively minor role in the 
dynamics once the scaling for the second conserved quantity 
is picked [via Eq. (33)] to correspond to scaling for the he- 
licity. Returning to our original question, we are ready to 
claim that the canonical choice of (~=0.5, X=2) is a special 
one because it lies on the energy-helicity curve (i.e., respects 
both the energy and helicity as conserved quantities), but it is 
not a unique one because there are many other parameters on 
the same curve which will give roughly the same values of 
xq * 

A further interesting issue is whether the scaling correc- 
tions Slq--besides depending on h and e-also depend on 
the magnitude and form of, the viscous damping term. In 
particular, we take the damping term to have the form 
D,= vk$TJ, and then focus upon the issue of whether the 
scaling results depend upon v and 4. The analysis of BBP3’ 
suggests that &.J’, is determined only by the form of the cas- 
cade term, since it is determined by short-range correlations 
between the different shells. She41 suggested an alternative 
viewpoint: Energy fluctuations are produced at all length 
scales and tend to cascade downward toward smaller lengths 
or higher n values. When they enter the viscous subrange, 
they see a changed environment, because the viscosity term 
then effectively enters the equation of motion. Depending 
upon the value and form of the viscosity term, more or less 
energy might be reflected toward lower n values. Thus the 
energy would flow through partially a direct and partially an 
inverse cascade. The amount of reflection would determine 
the corrections to scaling indices. The details of the reflection 
will be determined in part by the form and magnitude of 
viscous damping. 

Let us look at the facts once again by plotting 
&&I[ q(q - 3)] as a function of q for various cases. Now we 
fix X and r~ to their standard values and vary v and 4. We 
determine the 81q and their errors exactly as pointed out in 
the previous subsection. The various results for the devia- 
tions Sl, -though slightly different-are reasonably close 
together, cf. Fig. 5. The results for different types of viscosity 
differ by about two standard statistical errors. 

We have also done a preliminary analysis of the v de- 
pendence. In the hyperviscous case the results seem to be 
rather somewhat dependent on ZL For s= 6, we found, for 
different values of v, both stronger and weaker inertial range 
scaling corrections than for the standard s=2 situation. 

After having compared that curve with the She-Leveque 
theory,40 

Our numerical analyses seem to hint that S[, might de- 
it is also interesting to compare it with the approxi- pend on the type of viscosity. However, our result is certainly 

mations described in BBP. There are two steps of approxi- not accurate enough to be definitive. Many previous workers 
mation in the paper. In the f&t, described in Sec. III of BBP, have gotten confused by crossover effects or by corrections 

D. Dependence upon the form of dissipation 
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to scaling. However, it is to be expected that future workers To get an appropriate fluctuating quantity we take the dissi- 
will obtain improved results, perhaps sufficient to tie down pation and average it over a time interval r. For the GOY 
the errors and settle the issue. case take the average to be 

IV. TIME CORRELATIONS 

A. Connection between multifractal behavior of U, 
and dissipation 

In this section, we shall move back and forth between 
the shell model and the theory of real turbulence. In particu- 
lar, we shall wish to contrast the two theories of multifracta- 
lity, which bear many resemblances. However, as we shall 
see there is also a crucial difference, which is rooted in the 
nature of the two situations. In real turbulence, if there is a 
large scale velocity Ua, then any small-scale disturbance will 
produce a time derivative of the velocity 

/XJ(R,t) 
~ = -U,~VU(R,t). tit 

This time derivative produced by spatial variation and car- 
ried by the large-scale motion is called sweeping. There is no 
analog of sweeping in the GOY model since there is no 
coupling between U, and the large n Un(t). This distinction 
will produce a considerable difference in the answer which 
we will obtain for the multifractal properties of dissipation. 

Recall that in the multifractal approach to the usual tur- 
bulence theory,” averages of the velocity difference at a dis- 
tance Y have the form 

([U(R+r,t)-U(R,t)14)--[rlLlrq, (35) 

where V, is a typical value of the velocity, L is an integral 
scale and L& is the multifractal scaling exponent for the ve- 
locity. The (se*> in Eq. (35) stands for an average over space 
and time. The analogous quantity within the shell model is 
S ,t,q ior S,,, and L,, correspondingly), which scales with 
wave vector k, , 

s wj -k,‘q, 06) 

where now the average implied is a time average. In both 
cases, the deviations of cq from q/3 measure the deviation 
from the K41 description. 

Next we look at another form of multifractal behavior. 
As the energy cascades towards higher values of n it reaches 
sufficiently high wave vectors so that the viscosity can pro- 
duce energy dissipation. According to Eq. (12) the rate of 
energy dissipation is 

e(t) = vc k;lU,(t)l’. 
n 

i37) 

[The reader should not mix up the energy dissipation 
e(t) with the GOY model parameter E introduced in Eq. 
(6dj. We shall not refer to the latter in this section of the 
paper.] An analogous dissipation occurs in the Navier- 
Stokes theory. There the dissipation depends upon both space 
and time and takes the form 

I;= ~’ ~C Cdiuj(R) + ajui(R)12. 
i,i 

i 

t+7 
E,(t) = E(t’)dt’. (39) t 

In contrast, Meneveau and Sreenivasan4’ looked at real tur- 
bulence data obtained by taking a particular point in space 
and averaging over a period of time. They measured time 
averages as 

I 

t+r 
E,(t) = ~(R,t’)dt’. (40) 

t 

To be more precise, dR,t) was substituted by its one dimen- 
sional surrogate E’ (t) - (d,u, )“. The dissipation is thus mea- 
sured always at the same position and there is no reason to 
include its R dependence. In both situations, the multifractal 
behavior of the dissipation is defined by considering aver- 
ages of powers of the dissipation in the form 

kx~)l*)-~~. (41) 
If ,c.L~ is not proportional to q for 7 in the inertial range, then 
the dissipation is said to be multifractal. 

Following Refs. 10, 11, and 43, Benzi et aZ.44 developed 
a theory of this multifractal dissipation for the case of 
Navier-Stokes turbulence, noticing that ‘the dissipation of 
energy was fed through a cascade in which the flux goes 
through all scales of r up to and including the dissipation 
scale. 

The scales in space and time are connected by the 
sweeping process. If the inertial scale velocity is of order U, 
then the scales are connected by Taylor’s hypothesis45 

r 
r-- 

uo * 
(42) 

According to the analysis of Refs. 46, 10, 42, and 11, ,LL~ is 
completely determined by cq. This analysis says that to an 
order of magnitude, the dissipation on scale r is set by the 
flux at that scale, which can be estimated as 

(43) 

where U, is the velocity difference on scale r. Putting to- 
gether Eqs. (41)-(43) one finds that the dissipation on scale 
7 has the order of magnitude 

(44) 

concluding thus that ,CL~ is determined by the multifractal 
scaling of velocity according to 

ruq=--4+53q. (45) 

We would like to apply this approach to the shell model. 
However, this approach will not quite work in this case, be- 
cause there is no sweeping, so Taylor’s45 frozen flow hypoth- 
esis is not meaningful. Moreover, there is no spatial depen- 
dence so one can only deal with time averages. Thus in order 
to perform a similar analysis on the shell model, we start 
again using Eq. (37) to define the time-integrated dissipation. 
The next ingredient is to get the connection between the shell 
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number n and the time scale r. To an order of magnitude, in 
the shell model, the time derivative of U,, is given as k,Uz. 
Thus there is a natural turnover time for each shell defined 
by 

~,,(f)=kJJ,tWl-‘. (46) 

This equation can be solved to get the dependence of n upon 
Q- at each value of t and defines the function n( r,t). The final 
step is to get the dissipation from the energy flux. If the shell 
II is correctly picked so that the time scale lies within the nth 
shell, then the dissipation should be estimated as the energy 
flux in that shell. In the GOY model then, the dissipation and 
the flux may be estimated as 

E7(r)--J,,(t)--3[k,,U,~-,(tjU,,(tjU,~+,(t)l, (47) 

where in this equation, II is to be evaluated at n( r,t). 
Because U,,(t) is a fluctuating quantity, so is T,(t) and 

we cannot once and for all determine which shell belongs to 
which value of 7. This makes the analysis of the shell model 
more difficult than the calculation for the real turbulence 
problem. To analyze the model, we must go back to the f( cr) 
formalism which grew up as an alternative description of 
multifractal phenomena.11T’2,47 Here, f(a) is the singular 
spectrum as commonly defined in Refs. 12, 47, and 42. In- 
stead of defining la, we define the probability that U,(t) 
will have a magnitude which is of the order of k,*. This 
probability is a strongly varying function of IZ, and of the 
form ki(d, independent of II. Thus using the delta function 
one writes 

(S(ln U,,(t)+ CY In k,,))-kf”’ (48) 

and calculates averages as integrals over U. Thus, for ex- 
ample, 

l=(l)=/ da(6(ln U,,(t)+a In k,tj)-/ dcr k[(“). 

(49) 
The integral is to be done by a steepest descent technique. 
(We only keep factors which are exponential function of n. 
Powers of Ink,, are neglected.) In this way, we learn that the 
maximum value of f(a) is zero. An analogous calculation 
gives a direct evaluation of 5,. Consider 

c 
I 

&k,;q"+fb) - (50) 

On the one hand, this average is set by the definition of Eq. 
(126) to be k,y”J. On the other, the integral can be performed 
via steepest descents and gives the familiar Legendre trans- 
form definition of f( (Y), 

&=min[qa-f(a)]. 
cy 

(51) 

Once we know &, f(a) is known. 
Next we estimate the average of er taken to various pow- 

ers. Once again, we compute the averages by integrating 
over (Y. Now we have two conditions: the first being that e7 is 
given by expression (47) for some appropriate value of IZ, the 

second being that the appropriate value of n is defined via a 
solution of Eq. (46). Employing these two conditions, we 
find that 

(ET>= / da/ d41J,it)lqWn u,kt) 
+a In k,)S(ln ~+ln U,(t)k,)). (52) 

Substituting for the flux using Eq. (47) and observing 
that the delta function permits us to do the n integration, we 
thereby reduce the result to a simple integral over cr of the 
form 

dcu-““) ’ 
with the exponent having the value 

(53) 

X(a)= 
3qa-l-f(cY) 

1-CY * (54j 

In the usual way, the integral is calculated by steepest de- 
scent and ,LL~ is determined from the saddle point integration 
as 

pq=minX(a). (55) 
u 

As desired, this equation connects the scaling exponents ,uq 
and 5, . Note in particular, that pl = 0 holds as it should be, 
independently of the form of f ( LY). For similar approaches, 
leading to slightly different results, we refer to Ref. 43. 

The next step is a comparison of our theory with the 
results from the simulation of the model. For convenience, 
we denote (c$ by E,,$ . We expect E,,~ to scale in the inertial 
range. It is not clear a priori, what the inertial range will be 
in the time domain, as an application of Taylor’s hypothesis 
in the GOY model is not meaningful, see above. We find 
good scaling behavior for ~0.2 to 7=6, see Fig. 6 for that 
of %,2’ To extract even preciser scaling exponents from the 
numerics, we plot E,,~ vs CZ~,~ and determine the ratio ,LI,~/,u~, 
which is a direct analogy of extended self similarity intro- 
duced by Benzi et aL4* Figure 6 shows cTs4 vs Q. Scaling is 
seen in the range between r-O.05 and r-5, where the times 
are given in the natural time units of the GOY model, the 
large eddy turnover times. 

As stated above, to connect the 5, with the ,uu4, we need 
to find the singular spectrum f(o) from the l*. We take 
advantage of the fact that the numerical values coincide with 
the She-Leveque formula (32).” Then f(aj can be easily 
obtained through the Legendre transformation of 5,) 

f(a)=-2+ ln(2/3) 3(a-1’9) [ ]n[$$$) -[I +ln(2/3)j]. 

(56) 

We then use our formulas (53)-(55) to find the ratios 
,uqIpu2. The comparison with the numerical values extracted 
from the scaling of E,,~ vs E~,~ is shown in Table II. We 
estimate the error in the numerical values by comparing the 
results of linear fits in slightly different regions of the scaling 
range and find it to be between 1% for small q and 5% for 
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FIG. 6. The top picture shows the scaling behavior of l r,s in 5 while the 
bottom employs the idea of extended self-similarity to plot one moment 
against another, i.e., +, against Q, The slope of the best fit is also shown 
(dashed line). 

larger 4. Up to the 5th moments of l 7 the agreement between 
the numerical results and our scaling analysis seems to be 
within the statistical error. 

B. Time correlations for [L/,1 

In this section, we shall estimate the scaling behavior of 
one of the most basic time correlation functions, namely, 

TABLE II. The ratio /*,J,us from our data for velocity scaling compared 
with the ratio deduced from the scaling analysis of dissipation. The numeri- 
cal errors are estimated from the differences between the fits in slightly 
different fitting regions. The error in the first column due to the numerical 
error in the I& is much less significant compared to the error in the second 
column. In the last column, we give pglps as it follows from Eqs. (32) and 
(4.5). These values are systematically slightly larger than the first two col- 
umns, yet the agreement is satisfactory. 

q Derived from & via (55) Direct numerical result Derived from (32) 

1.0 0.00 0.0005t0.0002 0.00 
1.5 0.41 0.42CO.03 0.40 
2.0 1.00 1.00-lr0.03 1.00 
2.5 1.72 1.71+0.04 1.77 
3.0 2.54 2.52"O.l 2.67 
3.5 3.44 3.41+0.2 3.68 
4.0 4.42 4.25+0.2 4.78 
4.5 5.44 5.23zo.4 5.95 

C ,,,,,p,,,(~~=(I~~*(~)lp’I~~,(~+~)IP2)~ (57) 

We restrict ourselves to the case where r is much larger than 
the typical time scales of the shells nr and n2. The main idea 
of the calculation is to introduce a (large scale) shell m(t) 
into (57) such, that it has a relaxation time of order T, as one 
can then assume, that the shells nl and n2 are completely 
uncorrelated with m, whereas there should be more or less 
full correlation on larger scales than m. We thus determine 
the shell number m through T- 7,(f), or, by employing (46), 

r--r,(t)= lu,n;f)lk, -k,[-l-P(f)‘, 

with lu,(t)l~k; P(t). We may thus write 

c PI”1 #2”2@-) 

=/dm(~~~~~~~~~~~pz 

w4?zwlP’IK?z(~+ w 1 
XG[(l--/?(t))ln k,+ln T]. (59) 

In terms of the shell number m(t), our above restriction 

Q-- ~rn(W rn,, r?znz (60) 

reads as 

m(t)-% ,n2. (61) 

We thus may assume that the first two factors in (59) are 
independent of the last and also independent of each other 
due to Eq. (60). On the other hand, the last two factors are 
assumed to be fully correlated, as ~-7, . With Eq. (50) we 
obtain 

CP,nl,P2n2(+- 1 dm( I~~“‘) ( Izl”) 
X d@~)-bl +PZ)P3{[ 1 

-P(t)]ln k,+ln T} (62) 

The shells rzl and m are assumed to be independent. So we 
only have to plug in the definition of the scaling exponents 
5(p J, obtaining 

(1p-J # +). (63) 

Doing the same for the second factor, and performing the 
integral over m (i.e., replacing k, by T-~‘(‘-~)), we find 
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X dp~-Lf(P)-(PI+Pz)P+%(Pl)+b(P2)1/(1-P). 

I 

(64) 
A saddle point approximation leads to 

C pl,~, ,p2,,2( ,)-k,;liip1’k~~i~2’,- @ m  ‘p2) 

with 

~h~~d=mq3 
f(P)-(pl+pz)P+Y(pl)+5(pz) 

1-P 
& 

which is our final result of this section. We  think it is worth- 
while to numerically check our prediction (66) within the 
GOY dynamics and possibly try to extend it to Navier- 
Stokes dynamics. 

C. Lyapunov indices and  correlation functions 

As one application of the correlation function analysis of 
the previous subsection, we turn to an analysis of the largest 
Lyapunov index of the GOY model, called A,. Our work 
follows closely the approach of Crisanti, Jensen, Paladin, and 
Vulpiani:9 hereafter called CJPV. 

By defining Su the infinitesimal difference between two 
(vector) fields evolving under the same equation (i.e., the 
GOY model in our case), we can define the exponential di- 
vergence rate y after a time delay 7 of two trajectories close 
at time t: 

y&t)= ” In “z’:;“. 
7 u (67) 

Using (67) we can define X, as the limit for infinite 7 of 
+yXt> and ye(t) or simply y(t) as the local divergence rate 
for trajectories. 

CJPV assumed that the Lyapunov exponent should be 
proportional to the average of the largest characteristic rate 
of change of the system, namely the inverse of the eddy 
turnover time Q-~ at the dissipation scale.49 In the GOY 
model, this rate is 

y=u,lk,i=kl-tY n * (68) 

We  define n to correspond to a dissipation scale by equating 
the viscous term II,, - vk;U, and the nonlinear term 
c,z-- k,*lJz of the GOY equation, giving 

U,(t) lk,,,,) = It--Re-‘. (69) 
Here we have called v the inverse Reynolds number Re of 
the GOY dynamical equations. From (68) and (69) we obtain 

XL=(y(t))= j- k,l,-‘y+fcay) fl(l+a)(ln k,)-In Re]da dn 

-Re”, (70) 
where 

a=max f(a)+l-a 
a’ i+a * (71) 

The numerical value of a estimated by CJPV is 0.46. W ith 
f(a) from (56) we obtain a=0.47. K41 predicts a=0.5. It 
follows that the exponent a is not strongly affected by the 
intermittency of the system. 

The next step is to calculate the variance in the 
Lyapunov indices, which CJPV estimated by numerically 
evaluating the integral 

PL= om([ro(t+s)-xLl[ro(t)-~Ll)ds I (72) 

which measures the strength of fluctuations in the system. In 
particular it has been shown44 that ,uUr/h,=l separates weak 
from strong intermittency. The numerical computations49 
show that p,==ReW where w =0.8. 

To estimate the integral in Eq. (72) one notices that the 
integrand involves a correlation of two factors Ik,U,l at dif- 
ferent times. This is just the kind of integral estimated in the 
previous subsection, except that n is fixed to lie at the dissi- 
pation scale. Instead of redoing the same calculations it is 
instructive to use an order of magnitude argument to estimate 
PL. 

When the time separation in Eq. (72) is of order of the 
integral scale value, s- 1, the fluctuations in y(t) are also of 
relative order unity. This result is a consequence of the fact 
that y(t) is proportional to a velocity, and the velocity is a 
product of roughly independent random variables, one for 
each shell. Each variable has fluctuations of order unity, and 
the ones for the first shell in y(t) and y(t+s) are only 
weakly correlated when s is of order unity. Thus the fluctua- 
tions in the integrand are of order of the uncorrelated part, so 
that this part of the integral gives 

I 

1 

PL- A; ds--XL (73) 
rd 

where ?-d is the dissipative time scale. For s*l there is of 
course no contribution. To estimate the remaining part SF of 
the integral one goes back to Eq. (65) and imagine integrat- 
ing a result like this over r. If #J is greater than one, the 
integral will contribute for small r, otherwise, the main con- 
tribution will occur for r of order unity. But, using the for- 
mula following from She and Leveque, Eq. (56), one can see 
that $ is far smaller than one. Hence the main contributions 
comes at the integral scale and we can argue 

pL-X;. (74) 

For the standard GOY model parameters ~=0.5, X=2 this 
gives us an estimate ,zL-Re2’0.47=Re0.94 which has to be 
compared with the numerical result of CJPV, pL-Reo.*. 
Considering the numerical uncertainty and the lack of rigor 
of our order of magnitude argument, the agreement is not too 
bad. 

We  also have to remind that the scaling properties of XL 
are linked to small fluctuations of the multiplicative process, 
i.e., in the region where the SL formula disagrees with our 
numerical findings. 

The computations discussed so far make the (strong) as- 
sumption that the instantaneous Lyapunov exponent is con- 
trolled by the instantaneous velocity field at the dissipation 
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time scale. In fact, between the two quantities there might be 
a time lag 7R which characterizes the relaxation time scale 
for the instantaneous Lyapunov exponent to become propor- 
tional to the inverse dissipation time scale; ra is not simply 
linked to the scaling properties of the COY model and its 
multifractal behavior. If 7R is small compared to the dissipa- 
tion time scale, then the analysis previously described gives 
the expected scaling of the intermittent exponent p with re- 
spect to the Reynolds number. On the other hand, for large 
enough TR one should find a smaller intermittency effect in 
the system. 

These examples give us some feeling that we might have 
a crude but useful understanding of time dependence in the 
GOY model. Yet more numerical and analytical analyses are 
definitely necessary. 

V. CONCLUSIONS 

The dynamical equations of the GOY model permit a 
solution of a type described by BBP in which there are 
roughly independent fluctuations in all of the shells of the 
inertial range. The long-range structure of these fluctuations 
give all the multifractal scaling properties. The conservation 
laws for energy and helicity play an essential role in the 
structure of the solution, but such “details” as the momen- 
tum scale X, the Reynolds number, and the form of the vis- 
cous cutoff might also determine the exact scaling expo- 
nents. 

All scaling that we have examined in the model seems to 
be determined by one set of multifractal exponents, e.g., 
those of the velocity. In particular, many time-dependent cor- 
relations may be estimated from these exponents. However, 
at the moment no accurate way of calculating these scaling 
exponents exists except by direct numerical simulation. 
However, see Refs. 40 and 50 for an interesting set of in- 
sights into the possible structure of the multifractal behavior. 

This paper devotes some attention to the scaling of time 
correlations. The corresponding frequency spectra have re- 
cently been studied in Ref. 51. Notice that these are the 
quantities which are measured in experimental studies of tur- 
bulence. Turbulence theory up to now has mainly focused on 
spatial structure functions and wave vector spectra and has 
connected them with time structure functions and frequency 
spectra only via Taylor’s hypothesis. Clearly, time depen- 
dence is worth studying in its own right. 

We finally stress that the exact way multifractality works 
itself out in the GOY dynamics is slightly different from 
what happens in real turbulence because there is no analog of 
the sweeping which plays such an essential role in Navier- 
Stokes dynamics, and, of course, because the GOY equations 
are only a model which might or might not catch essential 
features of the Navier-Stokes equations. 
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