
The clustering morphology of freely rising
deformable bubbles
Yoshiyuki Tagawa1,3,†, Ivo Roghair2, Vivek N. Prakash1, Martin van Sint
Annaland2, Hans Kuipers2, Chao Sun1,† and Detlef Lohse1,†

1Physics of Fluids Group, Faculty of Science and Technology, J. M. Burgers Centre for Fluid
Dynamics, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
2Multiphase Reactors Group, Department of Chemical Engineering and Chemistry, J. M. Burgers
Centre for Fluid Dynamics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven,
The Netherlands
3Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology,
1848588, Koganei-city, Tokyo, Japan

(Received 4 December 2012; revised 8 February 2013; accepted 17 February 2013;
first published online 18 March 2013)

We investigate the clustering morphology of a swarm of freely rising deformable
bubbles. A three-dimensional Voronoı̈ analysis enables us to distinguish quantitatively
between two typical preferential clustering configurations: a regular lattice arrangement
and irregular clustering. The bubble data are obtained from direct numerical
simulations using the front-tracking method. It is found that the bubble deformation,
represented by the aspect ratio χ , plays a significant role in determining which type
of clustering is realized: nearly spherical bubbles form a regular lattice arrangement,
while more deformed bubbles show irregular clustering. Remarkably, this criterion
for the clustering morphology holds for different diameters of the bubbles, surface
tensions and viscosities of the liquid in the studied parameter regime. The mechanism
of this clustering behaviour is most likely connected to the amount of vorticity
generated at the bubble surfaces.
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1. Introduction

Particles dispersed in a flow can distribute inhomogeneously, showing clustering
or preferential concentration behaviour. This is attributed to the interaction between
the two phases, and the inertia of the particles (Calzavarini et al. 2008; Toschi &
Bodenschatz 2009). A swarm of bubbles rising in a quiescent liquid is a subset of
the general case of particles dispersed in a complex flow. This topic of bubbly flow
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has applications in bubble columns, which are important in the chemical industry,
in chemical processes such as oxidation and chlorination in water treatment, and
in the steel industry (Deen et al. 2000). Freely rising bubbles in an originally
still liquid are known to induce liquid velocity fluctuations that result in the so-
called ‘pseudo-turbulence’. Bubble clustering in pseudo-turbulence has attracted much
attention because of its importance in applications and the lack of understanding
of the fundamental physics (Zenit, Koch & Sangani 2001; Martı́nez Mercado et al.
2010; Riboux, Risso & Legendre 2010; Roghair et al. 2011). Bunner & Tryggvason
(2002, 2003) have conducted numerical simulations and found that deformability of
the bubbles plays an important role in the clustering phenomenon: bubbles with
small deformability (spherical bubbles) show a horizontal alignment, while deformed
bubbles display clustering in the vertical direction. Meanwhile, experiments have found
both horizontal and vertical clustering, depending on parameters such as bubble
deformation, size and other flow properties (Cartellier & Rivière 2001; Zenit et al.
2001; Martı́nez Mercado et al. 2010).

In the present work, the bubble data are obtained from direct numerical simulations
(DNSs) of a swarm of rising bubbles. The bubble clustering in the same dataset was
previously studied using the angular pair correlation (Roghair, Annaland & Kuipers
2012b). Here, we revisit the issue of bubble clustering, using a Voronoı̈ analysis
technique, which has been proven to be a powerful tool for quantifying the clustering
behaviour of bubbles and particles in fluid flow (see e.g. Monchaux, Bourgoin &
Cartellier 2010; Fiabane et al. 2012; Tagawa et al. 2012). We extend the Voronoı̈
analysis to study the geometric morphology of the clusters formed by freely rising
deformable bubbles.

2. Voronoï analysis for clustering morphology of bubbles

In the method of Voronoı̈ tessellations, each Voronoı̈ cell is defined at a particle
location based on its neighbours (Okabe et al. 2000). Every point inside a Voronoı̈
cell is the nearest to the particle location compared to the neighbours; the exceptions
being border lines, vertices and facets, which have the same distance between two or
more particles. In a given three-dimensional distribution of particles, if the volume of
the Voronoı̈ cells is smaller compared to the cells in neighbouring regions, then the
particles belong to a clustering region. It has been found that a Γ distribution can well
describe the probability density functions (p.d.f.s) of the Voronoı̈ volumes of randomly
distributed particles in three-dimensions (Ferenc & Néda 2007), namely

f (x)= 3125
24

x4 exp(−5x), (2.1)

where x = V /V is the Voronoı̈ volume V normalized by the mean volume V . Such
a random distribution of particles, and their corresponding Voronoı̈ cells, are shown in
the upper panel of figure 1(b). In the lower panel of figure 1(b), the corresponding Γ
distribution fitted p.d.f. is shown. Particles that are not randomly distributed will have
a p.d.f. that deviates from this Γ distribution.

Figure 1 shows examples of different particle arrangements. In figure 1(a), the
particles prefer to aggregate in a small central region, accompanied by void regions.
We refer to this situation as ‘irregular clustering’. In this case, the probabilities of
small and large Voronoı̈ volumes are higher than the Γ distribution. In figure 1(c)
particles keep the same distance between each other, having the same size Voronoı̈
cells. Therefore, the size distribution becomes narrower compared to the case
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FIGURE 1. Examples of the different types by which a fixed number (in this case 100) of
particles can be spatially distributed: (a) irregular clustering (b) random distribution, and
(c) regular lattice arrangement. The upper panels show the Voronoı̈ tessellations based on
the particle positions in two dimensions, for ease of illustration. The lower panels show the
corresponding p.d.f.s of the Voronoı̈ volumes (the three-dimensional case). In each case, the
p.d.f. corresponding to the upper panel (thick red line) is compared with the p.d.f. of the
randomly distributed particles (dashed black line). The value of the clustering indicator (i.e. the
standard deviation of the p.d.f. normalized by that of randomly distributed particles, σ/σrnd) is
also shown below the p.d.f.

of randomly distributed particles. We refer to this situation as a ‘regular lattice
arrangement’. Tagawa et al. (2012) found that these distributions can be well fitted
by a Γ distribution with a single fitting parameter σ , which is the standard deviation
of Voronoı̈ volumes. Furthermore, this parameter σ can be used to quantify the particle
clustering. In this work, we use σ to investigate the morphology of the bubble
clustering. Here σ is normalized by the standard deviation of randomly distributed
particles σrnd. The indicator is (see figure 1) σ/σrnd > 1 for irregular clustering,
σ/σrnd = 1 for a random distribution, and σ/σrnd < 1 for a regular lattice arrangement.

In the application of the Voronoı̈ analysis on the present numerical data, there
are two specific issues that are addressed below. First, the Voronoı̈ cells of particles
located near the edges of the domain are not well defined, i.e. the Voronoı̈ cells either
do not close or close at points outside of the domain. These Voronoı̈ cells located
near the domain edges are usually discarded from the Voronoı̈ analysis (as in Tagawa
et al. 2012). However, in the present data, the number of bubbles in the domain is
small. In this case, we cannot afford to ignore the edge cells, as doing so will result in
poor statistics. We take advantage of the periodic boundary condition of the numerics
to overcome this problem. The periodic boundary condition enables us to form a box
(3 × 3 × 3 larger, and including all particles) surrounding the original box. We then
apply the three-dimensional Voronoı̈ tessellation on the particle positions in this larger

721 R2-3



Y. Tagawa and others

(a) (b) (c)

0.2

0.4

0.6

0.8

0

1.0

101 102 103

No. of randomly
distributed particles

100 104

100

10–1

10–2

101

10–3

p.
d.

f.

10010–1 101

Point particles

0.2

0.4

0.6

0.8

1.0 

0.1 0.2 0.30 0.4

FIGURE 2. (a) The standard deviation of Voronoı̈ volumes as a function of the number
of randomly distributed point-like particles in a periodic box. The standard deviations are
normalized by the standard deviation σΓ = 0.4472 for an infinite number of particles (>106)
in a box, as shown by Ferenc & Néda (2007). In the present datasets, we consider 16 bubbles in
a periodic box, and the corresponding data point is indicated by the red triangle. (b) The p.d.f.s
of Voronoı̈ volumes for randomly distributed spheres at different sphere–domain length ratios
D/L. The Γ fit for 16 spheres expressed by (2.2) with σrnd,pp (thin black line) and the p.d.f. for
randomly distributed point-like particles agree well. The shape of the p.d.f.s becomes narrower
with increasing D/L due to the finite-size effect. (c) The standard deviations of Voronoı̈ volumes
σrnd normalized by that for the point-particle case σrnd,pp as a function of D/L. The value
σrnd/σrnd,pp decreases with increasing D/L.

box. We can now ignore the cell edges on this larger box, as we have a sufficient
number of particles for good statistics. Also, if one considers the central box, although
some Voronoı̈ cells protrude into the neighbouring boxes, the total volume is still
conserved owing to the periodic boundary conditions. This is an added advantage of
this method.

Secondly, the number of particles available for the Voronoı̈ analysis is a key
parameter that can significantly affect the results (see figure 6 in Tagawa et al. (2012)).
We check the dependence of the number of particles on the standard deviation of
Voronoı̈ volumes in figure 2(a) for randomly distributed point-like particles. We vary
the number of particles inside each of the boxes that are replicated to form the
larger box as mentioned above. The Voronoı̈ tessellations are applied, and the standard
deviation of Voronoı̈ volumes for each case of the varying number of particles is
shown in figure 2(a). Also, the standard deviation of Voronoı̈ volumes is normalized
by that of randomly distributed particles with numbers >106 (Ferenc & Néda 2007).
Each error bar has been calculated by repeating this procedure more than 104 times.
We see in figure 2(a) that, when the particle number is less than 100, the value of
the standard deviation changes quite significantly. We note the peculiarity that, when
a box includes just one or two particle(s), the Voronoı̈ volumes are the same or
half of the volume of the domain, respectively, and hence the standard deviation is
zero. For a larger number of particles, the standard deviation grows with increasing
number of particles, shows an asymptotic behaviour, and saturates to the value of
unity when the particle numbers approach ∼1000. In previous work (Tagawa et al.
2012) we have used a value of σ/σΓ = 1 for the Voronoı̈ analysis, as we had 1000
particles in our simulations. In the present work, the number of bubbles used in
the numerical simulations is 16. In this case, figure 2(a) gives the corresponding
value of the standard deviation as σrnd,pp/σΓ = 0.82. We account for this change by
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Case no. Diameter
D (mm)

Void
fraction

Sphere–domain
ratio

Kinematic
viscosity

Surface
tension

α (%) D/L ν (×10−6 m2 s−1) γ (mN m−1)

1–3 1.0 10, 25, 40 0.23, 0.31 ,0.36 1 73
4 1.0 10 0.23 5 73
5 1.0 10 0.23 1 7.3
6–11 2.0 5–40 0.18–0.36 1 73
12–18 2.5 5–40 0.18–0.36 1 73
19–26 3.0 5–40 0.18–0.36 1 73
27–33 3.5 5–40 0.18–0.36 1 73

TABLE 1. Summary of the simulation parameters.

using σrnd,pp = 0.82σΓ in the equation that describes the Voronoı̈ volume p.d.f. fit using
the single parameter σ (Tagawa et al. 2012):

f (x)= 1

σ (2/σ
2)Γ

(
1
σ 2

)x(1/σ
2)−1exp−(x/σ

2). (2.2)

This equation indeed results in a nice fit, as shown in figure 2(b), where we plot
the Voronoı̈ volume p.d.f. for 16 randomly distributed particles (blue upward-pointing
triangles) and the curve from (2.2) (thin black line).

All the above discussions were devoted to point-like particles, but in this study
we consider bubbles with a finite size (D = 1–3.5 mm). Table 1 lists the different
parameters used in the numerics. Thus, we need first to understand the effect of
finite particle size on the Voronoı̈ volume distributions. For this, we artificially
generate random positions in three dimensions (see § 3) for 16 perfect spheres of
diameter D and change the domain size L to vary the sphere–domain length ratio
D/L. This sphere–domain length ratio D/L is related to the void fraction α by the
expression D/L = (3α/8π)1/3. For clarity of presentation, we have chosen to describe
the clustering results using D/L instead of α. In figure 2(b) we show the Voronoı̈
volume p.d.f.s for the 16 randomly distributed spheres at different D/L. The p.d.f. of
the Voronoı̈ volume for the randomly distributed point particles and for spheres at the
small value of D/L = 0.02 show quite a similar behaviour, i.e. the finite-size effect is
then negligible. The finite-size effects become more significant with increasing D/L,
and this is seen in the shape of the p.d.f. The p.d.f.s become narrower with increasing
D/L, implying that the bubbles are distributed more evenly throughout the domain.
At a large value of D/L, each of the spheres occupies a relatively larger volume in
the box, which reduces the available free space (for other spheres), leading to a more
constrained distribution and narrower p.d.f. shape.

The standard deviations of the Voronoı̈ volume p.d.f.s as a function of D/L are
shown in figure 2(c). The values σrnd are normalized by the standard deviation
obtained from the Γ distribution fit for randomly distributed point particles, σrnd,pp.
The indicator σrnd/σrnd,pp decreases monotonically with D/L, starting at 1 (at D/L = 0)
and reducing to ∼1/5 for D/L = 0.36, clearly indicating the effect of finite size. The
normalization of the clustering indicator C = σ(D/L)/σrnd(D/L) for each case used in
the discussion below is carried out at the same bubble–domain length ratio D/L, in
order to fully focus on dynamical effects. For the case of deformable bubbles to be
discussed below, there will be variations in the bubble eccentricity, which is difficult
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to take into account while defining a standard case for normalization of the clustering
indicator. Hence, we choose the reference case of artificially generated spheres to
present our results below.

3. Numerical method

Three-dimensional DNSs have been performed to simulate bubbles rising in a
swarm, using periodic boundary conditions in all directions to mimic an ‘infinite’
swarm without wall effects, similarly to what has been done by Bunner & Tryggvason
(2002). The simulations have been carried out using a model that incorporates the
front-tracking (FT) method (Unverdi & Tryggvason 1992), which tracks the interfaces
of the bubbles explicitly using Lagrangian control points distributed homogeneously
over the interface. Compared to interface reconstruction techniques, such as volume-
of-fluid or level-set methods, the advantage of the FT method is that the bubbles are
able to approach each other closely (within the size of one grid cell) and can even
collide, while preventing (artificial) merging of the interfaces. Therefore, the size of
the bubbles remains constant throughout the simulation. Especially for bubble swarm
simulations with high void fractions as studied in this work, this is an important aspect.
In addition, the interface is sharp, allowing the surface tension force to act at the exact
position of the interface.

In our model (see Dijkhuizen et al. (2010) and Roghair et al. (2011a) for details),
the fluid flow is solved by the discretized incompressible Navier–Stokes equations on
an Eulerian background mesh consisting of cubic computational cells:

ρ
∂u
∂t
+ ρ∇ · (uu)=−∇p+ ρg+∇ ·µ[∇u+ (∇u)T] + Fγ , ∇ ·u= 0, (3.1)

where u is the fluid velocity and Fγ represents a singular source term accounting
for the surface tension force at the interface (see below). The flow field of both
phases is resolved using a one-fluid formulation where the physical properties are
determined from the local phase fraction. The local density ρ is obtained by the
weighted arithmetic mean and the dynamic viscosity µ is obtained via the weighted
harmonic mean of the kinematic viscosities. The interface between the gas and the
liquid is tracked using Lagrangian control points, distributed over the interface. The
control points are connected such that they form a mesh of triangular cells. The
surface tension force is acquired by obtaining the pull forces for each marker m and
its neighbouring cells i: Fγ,i→m = γ (tmi × nmi). The shared tangent tmi is known from
the control point locations, and the shared normal vector nmi is obtained by averaging
the normals of marker m and neighbouring marker i. Subsequently, the surface tension
force is mapped to the Eulerian background grid using mass weighing (Deen, van Sint
Annaland & Kuipers 2004) at the position of the interface. After accounting for the
surface tension force on all interface cells, the total pressure jump 1p of the bubble
is obtained. The pressure jump is distributed over the bubble interface and mapped
back to the Eulerian mesh. For interfaces with a constant curvature (i.e. spheres), the
pressure jump and surface tension cancel each other out exactly on each marker, but
if the curvature varies over the interface (which is the case for deformed bubbles), a
small net force will be transmitted.

At each time step, after solving the fluid flow equations, the Lagrangian control
points are advected with the interpolated flow velocity. Spatial interpolation of the
flow field to the control point positions is performed by a piecewise cubic spline, and
temporal integration is performed by Runge–Kutta time stepping. Since the control
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points may move away from or towards each other, the interface mesh is remeshed
afterwards, in order to keep the control points equally distributed on the interface
(while keeping the volume enclosed by the dispersed elements constant). The edges
of the triangular interface markers are kept within 0.2–0.5 times an Eulerian grid size.
The total runtime for numerical simulations is about t = 2 s, and the Voronoı̈ volume
time series reveals that the clustering is initially transient and settles to a quasi-steady
state after t = 1 s. Hence, we only consider data after t = 1 s from the starting time.
The clustering results are averaged over different snapshots at intervals of t = 0.05 s.

Each bubble was tracked individually, using the locations of the control points
on the interface to acquire the bubble position (centre of mass) and bubble shape
(aspect ratio), which were stored for further analysis. The aspect ratio is calculated
from the ratio between the major and the minor axes χ along the Cartesian axes:
χ =√dxdy /dz. Note that this procedure neglects diagonal shape deformations, so that
strongly deformed bubbles oriented diagonally may be attributed an aspect ratio of
χ ≈ 1 (nearly spherical). In this work we consider bubbles with limited deformability
and under mild flow conditions so that these effects can safely be neglected.

Simulations were performed using 16 bubbles in a periodic domain. For ellipsoidal
bubbles, Bunner & Tryggvason (2002) have indicated that 12 bubbles is the minimum
number of bubbles that are required to simulate bubbles rising in a swarm, based
on their terminal rise velocity. The present simulations with periodic boundary
conditions might not be totally comparable to real systems, as length scales larger
than the size of the periodic box might not be captured accurately. The void fraction
α = Vbubbles/Vdomain was varied from dilute (α = 0.05) up to dense void fractions of
α = 0.4 by changing the domain size. In all simulations, the spatial resolution was
determined by the bubble diameter 1.0 × 10−3 6 db 6 3.5 × 10−3 such that the length
of a cubic grid cell 1x = db/20. The physical properties represent typical air bubbles
in water conditions, i.e. a density ratio of ρliquid/ρgas ≈ 1000, dynamic viscosity ratio
µliquid/µgas ≈ 50 and a surface tension coefficient γ = 0.073 N m−1. The simulation
parameters are summarized in table 1. Figure 3 provides information on the variation
of (a) the aspect ratio χ and (b) the Reynolds number Re as a function of D/L.
Here, the Reynolds number is defined as Re = UD/ν, where U is the relative velocity
between the bubbles and surrounding liquid. The error bars in figure 3(a) indicate the
time-averaged standard deviation of the aspect ratio for all the bubbles. We observe
that the variation of χ , indicated by the error bars, decreases with increasing D/L
due to spatial restriction. The majority of the cases considered here (D > 2 mm)
correspond to Reynolds numbers Re > 200, as shown in figure 3(b). However, the
Reynolds numbers are lower (∼100) for the bubble sizes of D= 1 mm and for special
cases of high viscosity, Re= 12.

In order to avoid initialization effects from influencing our simulation results, the
bubble positions were initially set to a non-ordered fashion in the domain. Especially
at higher void fractions it is not efficient to subsequently place a bubble randomly in
the domain without allowing overlap. Therefore, a Monte Carlo simulation procedure
has been used to generate the initial positions of the bubbles, which works for all
void fractions (Frenkel & Smit 2002; Beetstra 2005). First, the bubbles are placed as
spheres in a structured configuration in the domain in a simple cubic configuration.
Depending on the void fraction, the bubbles might overlap with each other. We
now define the potential energy of the system as E = [|xi − xj|/(Ri + Rj)]n, with a
variable n characterizing how steep the potential is. The position of a bubble i is
given by xi and its radius by Ri. Each bubble is now moved by a small amount
in a random direction and the potential energy is determined. A move is accepted
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FIGURE 3. (a) The aspect ratio χ versus bubble–domain length ratio D/L. (b) Reynolds number
Re versus D/L.

whenever the potential energy remains the same or becomes less, whereas a move that
increases the potential energy is accepted only if it is smaller than a critical number
c = exp[k(Eold − Enew)], where k was set to 50. In a single iteration, each bubble is
allowed 200 attempts of displacement. Then, the power n is gradually increased from
an initial value of 6 up to a final value of 100, and a new iteration starts. The potential
energy of the system as a whole decreases during this process, and when the final state
has been reached and the bubbles show no overlap at all, the positions of the bubbles
are accepted for use as starting positions in the front-tracking model. Additionally, in
the initial transient of the front-tracking simulations, the bubbles accelerate, deform
and move through the domain, which also changes their relative positions. This start-
up stage is discarded from further analysis. For the random positions of the point
particles as shown in figure 2(c), the same procedure was used, except that we chose
the number of allowed displacements for each particle per iteration to be 104.

4. Results and Discussions

We recall that the values of the clustering indicator C = σ/σrnd are: C > 1 for an
irregular cluster, C = 1 for a random distribution, and C < 1 for a regular lattice
arrangement (figure 1). Figure 4 shows the typical bubble clustering snapshots of the
side view and top view. Figure 4(a) displays a snapshot of the case of bubble diameter
D = 1.0 mm at D/L = 0.23. We observe horizontal clustering in one layer in the side
view. The top view reveals a regular lattice arrangement, which corresponds to C < 1.
In figure 4(b), D= 1.0 mm at D/L = 0.36, and the bubbles show horizontal clustering
in a double layer, owing to larger D/L (i.e. larger void fraction α), and the value of
C is correspondingly less than 1. It must be noted that the shapes of the bubbles for
D= 1.0 mm at (a) D/L= 0.23 and (b) D/L= 0.36 are almost spherical. In figure 4(c),
we show the case of D = 1.0 mm at D/L = 0.23 with lower surface tension, where
the bubbles are evenly distributed throughout the domain and the horizontal one-layer
clustering no longer prevails. In figure 4(d), in the case of D= 3.5 mm at D/L= 0.36,
the bubbles are more evenly distributed. The corresponding C values for both cases
are larger than 1, i.e. indicating irregular clustering. One must note that the bubbles
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FIGURE 4. Snapshots of bubbles showing typical clustering morphologies from the side and
top. The periodic box is indicated by the thin black lines. The bubbles are coloured to aid in
distinguishing between individual bubbles.

with D= 1.0 mm at D/L = 0.23 with lower surface tension (panel (c)) and those with
D= 3.5 mm at D/L= 0.36 have a deformed shape (panel (d)).

For a quantitative discussion, in figure 5(a) we show (as a colour contour plot)
the values of the clustering indicator C at different bubble–domain length ratios D/L
and bubble sizes D. The data points in the parameter space (table 1) are indicated
using open blue circles. The formation of regular lattice arrangements (C < 1) was
only encountered in the cases of 1.0 mm diameter bubbles at D/L = 0.23 and 0.36
(figure 5a). All other cases show irregular clustering (C > 1), but to a different extent.

It is well known that a rising spherical bubble with a free-slip boundary condition
generates little vorticity, whereas a rising deformed bubble has a wide region of wake
structure behind it (Magnaudet & Mougin 2007). The amount of vorticity generated
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FIGURE 5. (a) Bubble clustering results: a contour plot of the clustering indicator C as a
function of the bubble–domain length ratio D/L for all bubble sizes D (mm). The colour bar
indicates the magnitude of C . All the simulation cases in table 1 are shown here except cases
4 and 5. (b) The clustering indicator C as a function of the aspect ratio χ for: fixed bubble
size (open symbols), D = 1.0 mm (cases 1, 2, 4, 5 in table 1); and fixed bubble–domain length
ratio (solid symbols), D/L = 0.36 (cases 3, 18, 26, 33 in table 1). The clustering indicator
C increases with increasing aspect ratio, indicating that the shape of the bubbles plays a
crucial role in determining the clustering morphology. Spherical bubbles with an aspect ratio
χ = 1.015± 0.015 have C < 1, indicating the regular lattice arrangement. All deformed bubbles
with χ = 1.015± 0.015 have C > 1, implying irregular clustering.

from the bubbles determines the clustering morphology. The flow around spherical
bubbles can be expected to be close to potential flow, containing little vorticity, and
these bubbles form a regular lattice arrangement (in the horizontal plane). Deformable
bubbles with larger wake regions show a greater tendency to aggregate in the vertical
direction. Hence, in the discussion of the results, we focus on the bubble shape (or
deformability) characterized by the bubble aspect ratio χ . Below, we fix the size and
bubble–domain length ratio, and discuss the clustering at different χ .

Figure 5(b) shows the values of the clustering indicator C as a function of
the bubble aspect ratio χ . First, we keep the bubble size constant (D = 1.0 mm
shown with open symbols) and discuss results for different bubble–domain length
ratios, surface tensions and viscosities. The value of C increases with an increase
in the aspect ratio, indicating that the bubble shape is crucial for the clustering
structure. We now fix the bubble–domain length ratio (D/L = 0.36) and study the
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(cases 12–18 in table 1) show almost constant values of 6, implying that there is no horizontal
clustering. The result in the case of liquid with high viscosity (case 4 in table 1, green triangle)
and that for low surface tension (case 5 in table 1, red square) are also shown.

clustering behaviour for different bubble sizes shown with solid symbols in figure 5(b).
Although the fixed parameter is different in this case, we still see the same trend
of increasing C with increasing aspect ratio χ . Overall, we find that the shape
of the bubbles is crucial for the structure of the clustering. Considering the error
bars in figure 5(b), we find that the clustering transition occurs at a critical value
of eccentricity, χc = 1.015 ± 0.015. Spherical bubbles with χ . χc have C < 1,
indicating the regular lattice arrangement. All the deformed bubbles with χ & χc

have C > 1, indicating the irregular clustering morphology. In homogeneous bubbly
flows at moderate particle Reynolds numbers, monodisperse spherical bubbles have
been found to organize themselves into microstructures (e.g. Cartellier & Rivière
2001; Yin & Koch 2008; Cartellier, Andreotti & Sechet 2009). The physical reason
is that interactions between bubbles are responsible for a slight excess of horizontal
pairs, which is in agreement with present simulations at a high viscosity (case 4, see
table 1).

We also quantify the intensity of horizontal clustering by counting the maximum
number of bubbles at a horizontal plane, for the cases of D = 1 and 2.5 mm bubbles.
The bubbles are sliced at the horizontal plane and divided by the area of a circle
based on the bubble radius. Figure 6 shows the maximum number of bubbles in a
horizontal plane versus the bubble–domain length ratio. The line obtained from the
theory of square packing is also shown for the sake of comparison. On the one hand,
the 1 mm bubbles show a trend similar to the theoretical line, indicating that they
organize themselves to form horizontal clusters. On the other, the 2.5 mm bubbles
show almost constant values around 6, indicating the absence of horizontal clustering.
The result of the lower surface tension case (case 5 in table 1) is rather close to the
2.5 mm case (case 13 in table 1) due to deformation. These results for the horizontal
clustering are consistent with those obtained from the Voronoı̈ analysis.
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5. Conclusion

In this work, we have applied the three-dimensional Voronoı̈ analysis on DNS data
of freely rising deformable bubbles in order to investigate the clustering morphology.
The numerics used a front-tracking method that allows the simulation of fully
deformable interfaces of the bubbles at different diameters, bubble–domain length
ratios, surface tensions and liquid viscosities. The present Voronoı̈ analysis takes into
account the effects of the number of bubbles and the finite size. It then provides
a clustering indicator C = σ/σrnd, where σ is the standard deviation of Voronoı̈
volumes of the bubbles and σrnd is the standard deviation of Voronoı̈ volumes of
randomly distributed particles with finite size. We quantitatively identify two different
clustering morphologies: C > 1 for irregular clustering and C < 1 for a regular lattice
arrangement. Our results indicate that the bubble deformability, represented by its
aspect ratio χ , plays the most crucial role in determining the clustering morphology.
A regular lattice arrangement is observed in the case of nearly spherical bubbles with
χ . 1.015 ± 0.015. When the bubbles are deformable, for χ & 1.015 ± 0.015, an
irregular clustering behaviour is observed. This clustering behaviour is believed to be
related to the amount of vorticity generated by the bubbles. The irregular clustering for
deformed bubbles is due to the low-pressure regions in their wakes, which attract other
bubbles. Spherical bubbles tend to form a regular lattice arrangement due to reduced
vorticity generation.
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MARTÍNEZ MERCADO, J., CHEHATA-GÓMEZ, D., VAN GILS, D. P. M., SUN, C. & LOHSE, D.
2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650,
287–306.

MONCHAUX, R., BOURGOIN, M. & CARTELLIER, A. 2010 Preferential concentration of heavy
particles: a Voronoı̈ analysis. Phys. Fluids 22, 103304.

OKABE, A., BOOTS, B., SUGIHARA, K. & CHIU, S. N. 2000 Spatial Tessellations. Wiley.
RIBOUX, G., RISSO, F. & LEGENDRE, D. 2010 Experimental characterization of the agitation

generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509–539.
ROGHAIR, I., VAN SINT ANNALAND, M. & KUIPERS, J. A. M. 2012b Drag force and clustering in

bubble swarms, AIChE J. (early view) doi:10.1002/aic.13949.
ROGHAIR, I., LAU, Y. M., DEEN, N. G., SLAGTER, H. M., BALTUSSEN, M. W., VAN SINT

ANNALAND, M. & KUIPERS, J. A. M. 2011a On the drag force of bubbles in bubble
swarms at intermediate and high Reynolds numbers. Chem. Engng Sci. 66, 3204–3211.
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