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Three-dimensional Voronoı̈ analysis is used to quantify the clustering of inertial
particles in homogeneous isotropic turbulence using data sets from numerics in the
point particle limit and one experimental data set. We study the clustering behaviour
at different density ratios, particle response times (i.e. Stokes numbers St) and two
Taylor–Reynolds numbers (Reλ = 75 and 180). The probability density functions
(p.d.f.s) of the Voronoı̈ cell volumes of light and heavy particles show different
behaviour from that of randomly distributed particles, i.e. fluid tracers, implying
that clustering is present. The standard deviation of the p.d.f. normalized by that
of randomly distributed particles is used to quantify the clustering. The clustering
for both light and heavy particles is stronger for higher Reλ. Light particles show
maximum clustering for St around 1–2 for both Taylor–Reynolds numbers. The
experimental data set shows reasonable agreement with the numerical results. The
results are consistent with previous investigations employing other approaches to
quantify the clustering. We also present the joint p.d.f.s of enstrophy and Voronoı̈
volumes and their Lagrangian autocorrelations. The small Voronoı̈ volumes of light
particles correspond to regions of higher enstrophy than those of heavy particles,
indicating that light particles cluster in higher vorticity regions. The Lagrangian
temporal autocorrelation function of Voronoı̈ volumes shows that the clustering of
light particles lasts much longer than that of heavy or neutrally buoyant particles. Due
to inertial effects arising from the density contrast with the surrounding liquid, light
and heavy particles remain clustered for much longer times than the flow structures
which cause the clustering.
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1. Introduction
The distribution of particles transported by turbulent flows is a current research

topic with implications in diverse fields, such as process technology (Pratsinis &
Vemury 1996), cloud formation (Bodenschatz et al. 2010), and plankton dynamics
(Schmitt & Seuront 2008). In most of the cases, the particles have a finite size
and a different density from the carrier fluid, i.e. they have inertia. These inertial
particles cannot completely follow the fluid motion and distribute inhomogeneously
within the turbulent flow, leading to clustering or preferential concentration (Toschi
& Bodenschatz 2009). The two relevant dimensionless parameters describing the
dispersed inertial particles in the fluid are the density ratio β = 3ρf /(ρf + 2ρp), where
ρf and ρp are the densities of the carrier fluid and particle, respectively, and the Stokes
number, St = τp/τη, where τp = a2/3βν is the particle relaxation time, τη is the typical
time scale of the flow, which for a turbulent flow is the Kolmogorov time scale, a is
the particle radius, and ν is the kinematic viscosity of the fluid.

In recent years, both numerical and experimental studies have quantified the
clustering of particles by employing different approaches, such as statistical analysis
of single-point measurements (Calzavarini et al. 2008a), the box-counting method
(Fessler, Kulick & Eaton 1994; Aliseda et al. 2002), pair correlation functions (Chen,
Goto & Vassilicos 2006; Saw et al. 2008), the Kaplan–Yorke dimension (Bec et al.
2006; Calzavarini et al. 2008c), Minkowski functionals (Calzavarini et al. 2008c)
and segregation indicators (Calzavarini et al. 2008b; IJzermans et al. 2009). It is
not possible to obtain global information on bubble clustering from a single-point
analysis (Calzavarini et al. 2008a). Methods such as box-counting and pair correlation
functions, although useful, require the selection of an arbitrary length scale that
affects the quantification of the clustering. The Kaplan–Yorke dimension, based on
the calculation of the Lyapunov exponents, quantifies the contraction of a dynamical
system by considering the separation rates of particle trajectories. Nevertheless, it
does not provide global morphological information. Minkowski functionals, originally
used to provide complete morphological information of the large-scale distribution
of galaxies (Kerscher et al. 2001), have been applied to the study of clustering
of particles in turbulent flows (Calzavarini et al. 2008c). Calzavarini et al. (2008c)
found that light particles cluster in filamentary structures, whereas heavy particles
have a wall-like topology around interconnected tunnels, and obviously no clustering
was observed for neutrally buoyant tracers. In the above numerical simulations and
experiments, the strongest clustering was found for particles with St ≈ O(1). The
problem with Minkowski-type analysis is that it is numerically expensive, and it does
not provide information on the Lagrangian evolution of the clusters.

An alternative mathematical tool that can be used to study clustering is the Voronoı̈
tessellation, which has been used in astronomy as a tool to characterize clustering of
galaxies (van de Weygaert & Icke 1989). Recently, Monchaux, Bourgoin & Cartellier
(2010) have applied a Voronoı̈ analysis to quantify the clustering of heavy particles
in grid-generated turbulence. This Voronoı̈ approach does not require the selection of
an arbitrary length scale for a fixed particle number, and it can provide information
on the Lagrangian statistics of clustering (Monchaux et al. 2010). Monchaux et al.
(2010) have obtained two-dimensional particle positions by imaging a turbulent flow
in a wind tunnel seeded with droplets. The Voronoı̈ cells are defined based on the
positions of the particles within the measurement domain. One can quantify the
clustering by calculating the probability density function (p.d.f.) of the normalized
areas of the Voronoı̈ cells. The p.d.f. will have a different shape for inertial particles
when compared to the corresponding p.d.f. of randomly distributed particles. The main
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N Reλ η τη Nparticles St

Simulation A 128 75 0.0332 0.1104 1.0× 103 0.1–4.0
Simulation B 512 180 0.001 0.0483 6.4×104 0.1–4.1
Experiment — 162 288 µm 80 ms 1.3× 103 0.04 ± 0.02

TABLE 1. Summary of the simulation and experimental parameters, where N is the size of
the numerical domain, Reλ is the Taylor–Reynolds number, η, τη are the Kolmogorov
length and time scales, respectively, and Nparticles is the number of particles in the
simulations, and the time-averaged particle number in the measurement volume for the
experiment. St is the Stokes number.

difference is observed at the small and large values of normalized areas, where the
p.d.f. of heavy particles has a higher probability than for randomly distributed particles.
There is a central region where there is no significant difference between the p.d.f.s
of heavy particles and randomly distributed ones. The values of normalized areas
at which the p.d.f. deviates from the randomly distributed particles can be used as
thresholds to classify Voronoı̈ cells that belong to either clusters or voids. Monchaux
et al. (2010) report a maximum preferential concentration for St around unity, in
agreement with other methods that have been used to study clustering.

The objective of the present work is to extend the work of Monchaux et al. (2010)
to (i) three dimensions, and (ii) a much larger range of density ratios (including
light, heavy, and neutrally buoyant particles) and Stokes numbers, i.e. we quantify
particle clustering by applying three-dimensional Voronoı̈ analysis to both numerical
and experimental data sets of particles and bubbles. Moreover, we (iii) correlate the
clustering behaviour of different particles with local turbulent flow quantities, and
(iv) study the Lagrangian temporal evolution of the clusters.

2. Experimental and numerical data sets and Voronoï analysis
2.1. Data sets

The numerical scheme for a dilute suspension (neglecting particle collisions) of point
particles in homogeneous and isotropic turbulence is described as follows (Maxey &
Riley 1983; Calzavarini et al. 2008c):

dv
dt
= β D

Dt
u(x(t), t)− 1

τp
(v− u(x(t), t)), (2.1)

where v = dx/dt is the particle velocity and u(x(t), t) the velocity field. The
dimensionless numbers used to model the particle motion are the density difference
between the particle and the fluid β and the Stokes number St . The values of
β = 0, 1 and 3 correspond to very heavy particles, neutrally buoyant tracers, and very
light particles (bubbles in water), respectively. When St = 0, the particles perfectly
follow the fluid flow behaving as fluid tracers. As summarized in table 1, we explore
a parameter space of β = 0, 1 and 3 and St ranging from 0.1 to 4.0 consisting
of 24 values at Reλ = 75 with the spatial resolution of N = 1283. For Reλ = 180
with N = 5123, we study five different values of St = 0.1, 0.6, 1.6, 2.6, and 4.1
(from iCFDdatabase http://cfd.cineca.it; Calzavarini et al. 2008c). The simulation of
the Navier–Stokes equation is based on a 2/3 de-aliased pseudo-spectral algorithm
with second-order Adams–Bashforth time-stepping (for details see Bec et al. 2006).

http://cfd.cineca.it
http://cfd.cineca.it
http://cfd.cineca.it
http://cfd.cineca.it
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Simulations were performed in a cubic box of side L = 2π with periodic boundary
conditions. The forcing adopted acts only at the largest scale; it is implemented by
keeping constant the kinetic energy content of the smallest shell (|k| 6 1) in Fourier
space. The intensity of the forcing is adjusted in such a way as to have a turbulent
dissipative scale (η) of about 0.8 lattice grids in real space. Particle dynamics is
evolved with time steps O(10) times smaller than the smallest Stokes time, leading
to an accurate resolution of the particle trajectories. Tri-linear interpolation is used
to determine the value of the velocity field at the particle position. The numerical
code was also validated by comparison with an independent code implementing
different temporal integration scheme, different particle interpolation and different
large-scale forcing (Toschi et al. 2009). The simulations extend over a few O(1)
large-eddy-turnover times, which is enough for particles to reach a statistically steady
distribution. In the present analysis, we fix the number of particles (Nparticles) for given
Reynolds numbers: 1000 particles for the simulation with the domain size of 1283

at Reλ = 75, and 6.4 × 104 particles for the simulation of 5123 at Reλ = 180. The
number of particles normalized by the corresponding domain volume, i.e. the volume
concentrations of the particles, for the two Reλ are identical. In one particular case of
Reλ = 75 and St = 0.6, the particle number is varied from 100 to 1× 105.

We conduct experiments in the Twente Water Tunnel (TWT), an 8 m long vertical
water tunnel designed for studying two-phase flows. By means of an active grid,
nearly homogeneous and isotropic turbulence with Reλ up to 300 can be achieved.
A measurement section with dimensions 2 m × 0.45 m × 0.45 m with three glass
walls provides optical access for three-dimensional particle tracking velocimetry (PTV)
system. Micro-bubbles with a mean radius of 170 ± 60 µm are generated by blowing
pressurized air through a ceramic porous plate that is located in the upper part
of the water tunnel. These micro-bubbles are advected downwards by the flow
passing through the measurement section. In our three-dimensional particle tracking
velocimetry (3D-PTV) micro-bubble experiments, we use a four-camera system to
get micro-bubble positions in the active-grid-generated turbulence in the TWT. The
experimental data are collected for a duration of 6 s (three times the large eddy
turnover time) at an acquisition rate of 1000 frames s−1. For the experimental data,
Reλ = 162, β = 3 and St = 0.04 ± 0.02, and the time-averaged number of particles
inside the measurement volume of 70 mm× 70 mm× 70 mm is 1.3× 103 (for further
details, see Martinez Mercado et al. 2010, 2011).

2.2. Voronoï analysis
The Voronoı̈ diagram is a spatial tessellation where each Voronoı̈ cell is defined at
the particle location based on the distance to the neighbouring particles (Okabe et al.
2000). Every point in a Voronoı̈ cell is closest to the particle position compared to
the neighbouring particles, the exceptions being the vertices, borderlines and facets
(see figure 1). Therefore, in regions where particles cluster, the volume of the Voronoı̈
cells is smaller than that of the cells in neighbouring regions. Hence, the volume of
the Voronoı̈ cells is inversely proportional to the local particle concentration. The p.d.f.
of the Voronoı̈ volumes normalized by the mean volume for randomly distributed
particles can be well described by a 0-distribution (Ferenc & Néda 2007) (see
figure 2). In the three-dimensional case, the 0-distribution has the following prefactor
and exponent:

f (x)= 3125
24

x4 exp(−5x). (2.2)
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FIGURE 1. An example of a three-dimensional Voronoı̈ tessellation. The dots represent
particle positions and lines represent the borders of the Voronoı̈ cells.
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FIGURE 2. (Colour online available at journals.cambridge.org/flm) The normalized Voronoı̈
volume p.d.f.s for heavy (squares), neutrally buoyant (circles), and light particles (triangles)
at St = 0.6 from direct numerical simulation (DNS) at (a) Reλ = 75 and (b) Reλ = 180. The
thick line shows the 0-distribution (2.2) for randomly distributed particles (Ferenc & Néda
2007); the p.d.f. of the neutrally buoyant particles agrees well with the randomly distributed
particles (+). Both heavy and light particles show clustering, but light particles show the
maximum clustering.

Here x is the Voronoı̈ volume normalized by the mean volume. Particles which are not
randomly distributed will have a p.d.f. that deviates from this 0-distribution, indicating
preferential concentration. The Voronoı̈ cells of particles located near the edges of
the domain are ill-defined, i.e. they either do not close or close at points outside the
domain. These cells at the border of the domain are not considered for the analysis.

3. Results
First, we present results on the effect of the density ratio (β) on the clustering,

followed by the effect of the Stokes number (St) and the number of particles (Nparticles).
Then, we show how the volume of Voronoı̈ cells (V ) and enstrophy are related.

http://journals.cambridge.org/flm
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Finally, we present results on the Lagrangian autocorrelations of Voronoı̈ volumes and
enstrophy.

3.1. Density effect
Here we study the clustering behaviour of particles of different β at a fixed St for two
different Reλ. Figure 2 shows the p.d.f.s of the Voronoı̈ volumes (V ) normalized by
their averaged volume (V̄ ),V /V̄ , for heavy, neutrally buoyant, and light particles of
St = 0.6 at Reλ = 75 (figure 2a) and 180 (figure 2b). It clearly shows that the trends
in the probability density functions are similar for both Reλ. The p.d.f. of neutrally
buoyant particles follows the 0-distribution (2.2) quite well, reflecting that neutrally
buoyant particles do not have any preferential concentration. In contrast, the p.d.f.s of
light and heavy particles clearly show different behaviour compared to the randomly
distributed particles. We observe that the probability of finding either small or large
Voronoı̈ volumes is higher for both light and heavy particles. The two regions of small
and large volumes can be used to identify clusters and voids. The strongest clustering
is observed for light particles, as the probability of finding small Voronoı̈ volumes
is the highest. Owing to the density difference, light particles accumulate in vortex
filaments due to centrifugal forces (Mazzitelli, Lohse & Toschi 2003; Mazzitelli &
Lohse 2004; Biferale, Scagliarini & Toschi 2010), while heavy particles concentrate in
regions of intense strain (Bec et al. 2006). Here, although the heavy particles show
clustering, it is less compared to light particles. These results are consistent with the
Minkowski analysis by Calzavarini et al. (2008c).

3.2. Stokes number effect
In this section, we study the effect of St on the clustering behaviour for the three
types of particles. We study the clustering behaviour of the particles by examining the
deviations of their Voronoı̈ volume p.d.f.s from the 0-distribution.

Figure 3 shows p.d.f.s of light (β = 3) and heavy (β = 0) particles for different
St at Reλ of 75 and 180. First, we discuss the clustering of light particles as shown
in figure 3 for Reλ of (a) 75 and (b) 180. Both Reynolds numbers give a similar
trend with increasing St . When St increases, the probability of finding clusters and
voids increases up to a value of St = 1.6, after which the dependence becomes weaker
for both Reλ. We note that the experimental result, shown with stars in figure 3(b),
for micro-bubbles with St = 0.04 ± 0.02 agrees reasonably well with the trend of the
numerical data for light particles. In any case, for these small Stokes numbers, the
p.d.f. of the Voronoı̈ volumes is still qualitatively similar to that of tracers. Another
important feature of the light particle p.d.f. is that the highest probability occurs at
the smallest volume and decreases monotonically with increasing volume for St in
the range of 0.6 to 4. As studied by Calzavarini et al. (2008c), bubbles in this range
of St tend to get trapped in vortex filaments, leaving void regions. Thus, most of
the bubbles are concentrated in small regions and there are few bubbles outside these
small regions.

In general, the clustering of heavy particles is weaker than that of light particles. For
heavy particles, as shown in figure 3(c,d), as St increases, the probability of finding
clusters and voids increases up to a value of St = 1.6; then the St dependence changes
for different Reλ, as discussed below.

Monchaux et al. (2010) found that the Voronoı̈ area statistics of heavy particles
can be well fitted by a log-normal distribution. For comparison, figure 4(a) shows
the log-normal fitting for the p.d.f.s of the present three-dimensional Voronoı̈ volumes
for the three different types of particles. It is clear that the Voronoı̈ volume statistics
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FIGURE 3. (Colour online) The normalized Voronoı̈ volume p.d.f.s for different St ranging
from 0.1 to 4 in the numerics for (a) light particles β = 3 at Reλ = 75, (b) light particles
β = 3 at Reλ = 180, (c) heavy particles β = 0 at Reλ = 75, and (d) heavy particles β = 0 at
Reλ = 180 . The stars in (b) correspond to the experimental result with St = 0.04 ± 0.02 at
Reλ = 162.
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FIGURE 4. (Colour online) The comparison between log-normal and 0-distribution of (3.1)
fitting for the p.d.f. of the three-dimensional Voronoı̈ volumes. Open symbols represent heavy
(squares), neutrally buoyant (circles), and light particles (triangles) at St = 0.6 from DNS at
Reλ = 75; the lines represent (a) log-normal, and (b) 0-distribution.

cannot be characterized well by the log-normal function, not even for the neutrally
buoyant particles. However, the p.d.f.s for all types of particles can be fitted very well
by the 0-distribution (see figure 4b) with only one fitting parameter σ :

f (x)= 1

σ (2/σ
2)0

(
1
σ 2

)x(1/σ
2)−1exp−(x/σ

2), (3.1)
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where σ is the standard deviation of the Voronoı̈ volumes. Hence σ provides a proper
statistical quantification of Voronoı̈ volumes.

In order to quantify the clustering using a single number, we use the standard
deviation σ of the normalized Voronoı̈ volume distributions. In figure 5(a), we plot σ
normalized by the standard deviation of the Voronoı̈ volumes for randomly distributed
particles σ0. The magnitude of the indicator σ/σ0 distinguishes the behaviour of
light, neutrally buoyant, and heavy particles. A higher value of the indicator reflects
stronger clustering for a given Reλ. For neutrally buoyant particles there is no observed
clustering, hence the indicator value is constant at 1. Heavy particles show clustering
and the indicator value saturates at St ≈ 1–2 at Reλ = 75. However, the indicator value
continuously increases with St at the higher Reynolds number of Reλ = 180, and the
absolute value of the indicator σ/σ0 is larger for higher Reλ. This indicates that the
clustering of heavy particles is stronger at higher Reλ for a given St . Figure 5(a)
shows that the absolute value of the indicator σ/σ0 for light particles is also larger
for higher Reλ, revealing a stronger clustering for light particles at higher Reλ. The
reason for the Reynolds number effect could be because of the changing range of
length scales of the vortex filaments which affect the clustering. At higher Reλ, there
is a wider range of clustering length scales, resulting in a Voronoı̈ volume distribution
with a higher value of standard deviation. The curves corresponding to light particles
show the strongest clustering, with a peak at St ≈ 1–2 for both Reλ = 75 and 180.
This clustering result has a consistent trend with that of the Kaplan–Yorke analysis
(Calzavarini et al. 2008c).

We also add the data point for the standard deviation of the experimental Voronoı̈
volume p.d.f. as shown in figure 5. Although the mean value of the indicator σ/σ0
for the experimental data is higher than those from the numerical simulations of
light point particles, there is good agreement with the numerical trend within the
experimental error bar. More experimental data at larger Stokes numbers, i.e. larger
bubbles, will be needed to come to a final conclusion on this issue.

3.3. Effects of the number of particles
In principle, one can expect different behaviours depending on the number density
of particles. In the simulation data set A, there are 105 particles available for one
special case of Reλ = 75 and St = 0.6. Using this snapshot, we study the effects
of the particle number on the value of the clustering indicator σ/σ0. We subsample
data from this snapshot by selecting the required number particles and computing the
Voronoı̈ statistics. This subsampling procedure is randomized and then carried out at
least 100 times for each case of particle number. Figure 6 shows the effect of varying
the number of particles on the clustering indicator σ/σ0 and the error bars represent
the standard deviation of all the subsamples of a given number of particles. In the
present data set, the mean distances of particles are 34.47η for Nparticles = 102, 6η for
Nparticles = 103, 3.44η for Nparticles = 105, which are all above 1η. Hence, we are always
studying situations where the mean particle distances are in the inertial range.

As shown in figure 6, for light and heavy particles the value of the indicator
increases as the number of the particles is increased. The evolution of the value of the
indicator σ/σ0 is steeper with increasing number of particles, and there seems to be
no plateau region where the indicator value saturates. We do not understand the exact
reason for this particle number dependence. One possible reason could be that the
clusters have a complicated structure (Calzavarini et al. 2008c). However, for a given
number of particles, the indicator does show a consistent trend: a stronger clustering
for light particles, weaker clustering for heavy particles, and no clustering for neutrally
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FIGURE 5. (Colour online) (a) Normalized standard deviation σ/σ0 (indicator) of the
Voronoı̈ volume distributions versus St for the two different Reλ from DNS data. The symbols
correspond to heavy (squares), neutrally buoyant (circles), and light particles (triangles).
Open and filled symbols represent data at Reλ = 75 and Reλ = 180, respectively. The value
of the indicator for neutrally buoyant particles remains constant at 1, i.e. clustering is not
observed, whereas light particles show the most clustering with a peak at St ≈ 1.5 for both
Reλ. The experimental result of micro-bubbles is plotted with the star. (b) An enlarged plot
showing only the results for light particles.

buoyant particles. Moreover, the error of the indicator calculated at Nparticle = 1000
is less than 4 %. Therefore, at a fixed number of particles, the clustering indicator
σ/σ0 of the Voronoı̈ volume is robust. In the analysis that follows, we use the data
of Nparticles = 1000 for the simulation with the domain size of N = 1283 at Reλ = 75
(simulation A).

3.4. Relation between the volume of the Voronoï cell and enstrophy
We relate the Voronoı̈ volumes for the three different types of particles with turbulent
flow quantities. A natural property for this comparison would be the enstrophy
Ω = ω2/2 (where ω is vorticity). Benzi et al. (2009) have shown that different types
of particles react sensitively to the local enstrophy at the particle position, reflecting
their tendency to stay in regions with different vorticity contents. We thus calculate
the joint p.d.f. of Voronoı̈ volumes and enstrophy for three types of particles at a
fixed St = 0.6 for Reλ = 75. For comparison, we also calculate the joint p.d.f. for the
case of neutrally buoyant particles with the smallest St available in the simulations
(St = 0.1 and β = 1). The statistical behaviour of these particles is expected to be
close to that of ideal fluid tracers (St = 0 and β = 1). From now on, we refer to this
case as the fluid tracer case. The Voronoı̈ volume and the enstrophy are normalized by
the mean values (Vtr and Ωtr) of the fluid tracers. Figure 7 shows the joint p.d.f.s of
the normalized Voronoı̈ volume (V /Vtr) and the normalized enstrophy (Ω/Ωtr) for the
different types of particles. The joint p.d.f. for neutrally buoyant particles of St = 0.6,
shown in figure 7(c), is very similar to that of fluid tracers shown in figure 7(a).
We observe a clear difference in the joint p.d.f. for heavy and light particles, as
shown in figure 7(b,d). The coordinates corresponding to the peak of the joint p.d.f.
((Ω/Ωtr)

max
jpdf , (V

p/Vtr)
max
jpdf ) is indicated by the crosses in the figure for each case.

Compared to the tracer case, a slightly lower (V p/Vtr)
max
jpdf and a lower (Ω/Ωtr)

max
jpdf

for heavy particles indicates more clustering at low enstrophy regions. The maximum
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FIGURE 6. (Colour online) Normalized standard deviation of the Voronoı̈ volume
distributions as a function of number of particles taken from a snapshot case at Reλ = 75.
The dashed line shows the number of particles we used in the present work at Reλ = 75 and
St = 0.6 (simulation A).

value of the joint p.d.f.s for the light particles is located at the region with a much
higher enstrophy and a smaller Voronoı̈ volume. This shows that the light particles
shows strong clustering at high enstrophy regions.

The St dependence on the peak coordinates of the joint p.d.f. ((Ω/Ωtr)
max
jpdf ,

(V p/Vtr)
max
jpdf ) is plotted in figure 8. As shown in figure 8(a), the value of (V p/Vtr)

max
jpdf

for neutrally buoyant particles is nearly same as that of tracers at St from 0.1 to
4. The value of (V p/Vtr)

max
jpdf for heavy particles is slightly smaller than unity for all

St , indicating clustering. Figure 8(a) also shows that the clustering for light particles
is stronger, as evidenced by the much smaller (V p/Vtr)

max
jpdf compared to those of

neutrally buoyant and heavy particles at all St . The minimum value of (V p/Vtr)
max
jpdf

indicating strongest clustering for the light particles is located at St = 1–2, which is
in excellent agreement with the results obtained using the indicator σ/σ0 (figure 5).
The corresponding enstrophy at the peak ((Ω/Ωtr)

max
jpdf ) of the joint p.d.f. versus St for

the different particles is shown in figure 8(b). The value of (Ω/Ωtr)
max
jpdf for the heavy

particles is smaller than unity, and it is much larger than unity for the light particles.
This reflects the clustering of light particles in flow regions with very high enstrophy,
whereas heavy particles cluster in low enstrophy regions for all St in the present study.

3.5. Voronoï Lagrangian autocorrelation
Finally, we conduct a Lagrangian analysis on the Voronoı̈ volumes. For each type of
particle we calculate the Lagrangian autocorrelation of its associated Voronoı̈ volume.
Figure 9(a) shows a typical temporal evolution of Voronoı̈ volumes for the three
types of particles at St = 0.6 and Reλ = 75. To compare the behaviour of the three
different particles, we choose particles with similar Voronoı̈ volume at the starting
time and trace their time evolution. While the Voronoı̈ volumes of heavy and neutrally
buoyant particles change frequently in time, it is clearly seen that light particles tend
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FIGURE 7. (Colour online) Joint p.d.f.s of normalized Voronoı̈ volumes and enstrophy for
tracers and particles at St = 0.6 for Reλ = 75: (a) fluid tracers, (b) heavy particles, (c)
neutrally buoyant particles, and (d) light particles. The cross indicates the location of the
maximum probability (peak) for each case. (a) Tracers, (b) β = 0, St = 0.6, (c) β = 1,
St = 0.6, (d) β = 3, St = 0.6.
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FIGURE 8. (Colour online) The coordinates of the peak of the joint p.d.f.s of normalized
Voronoı̈ volumes and enstrophy as a function of St: (a) V p/Vtr versus St , (b) Ωp/Ωtr

versus St .

to have small values for longer times. This suggests that light particles are trapped
in clustered regions for a long time and are suddenly ejected, as seen in figure 9(a)
around τ/τη ≈ 95.
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FIGURE 9. (Colour online) Lagrangian Voronoı̈ analysis for heavy (squares), neutrally
buoyant (circles), and light particles (triangles) at St = 0.6 and Reλ = 75. (a) Temporal
evolution of Voronoı̈ volumes. (b) Temporal autocorrelation functions of Voronoı̈ volumes.
(c) Temporal autocorrelation functions of enstrophy.

Figure 9(b) shows the autocorrelation function CV(τ ) for heavy, neutrally buoyant,
and light particles at a fixed St = 0.6 and Reλ = 75. We define the decorrelation
time τV as the time when the autocorrelation function has decreased to 1/2, i.e.
CV(τV) = 1/2. As shown in figure 9(b), the decorrelation time for light particles
is around τV ∼ 7τη, whereas for heavy and neutrally buoyant particles decorrelation
already occurs around 4τη. Thus the clustering of light particles lasts for a longer
time as compared to heavy and neutrally buoyant particles. As shown by Calzavarini
et al. (2008c), light particles accumulate in filamentary structures and heavy ones
tend to cluster outside these structures to form wall-like interconnected tunnels. These
differences in the morphology of the clustered particles could be a possible reason for
the light particles being clustered for a longer time as compared to heavy particles.

We also compare the autocorrelation time scale of the Voronoı̈ volumes to that
of the enstrophy shown in figure 9(c) for the same St and Reλ. First, as expected,
for neutrally buoyant particles, the Lagrangian decorrelation time for the Voronoı̈
volumes is comparable to that of the enstrophy (τΩ), i.e. τΩ ∼ τV ∼ 4τη, because the
neutrally buoyant particles do not cluster. However, remarkably, for light particles the
decorrelation time of the Voronoı̈ volumes is much larger, τV ∼ 7τη, i.e. more than
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FIGURE 10. (Colour online) (a) Decorrelation time of Voronoı̈ volume (τV) and enstrophy
(τΩ ) as a function of St at Reλ = 75 for heavy (squares), neutrally buoyant (circles), and light
particles (triangles). Open and filled symbols represent decorrelation times of Voronoı̈ volume
and enstrophy, respectively. (b) The ratio of decorrelation times (τV/τΩ ) as a function of St .

twice as large as the autocorrelation time scale τΩ ∼ 3τη of the enstrophy itself. For
heavy particles, the Lagrangian decorrelation time of the Voronoı̈ volumes is around
τV ∼ 4τη, which is also about twice that of enstrophy τΩ ∼ 2τη.

We also study the St dependence of the decorrelation time scales of Voronoı̈ volume
(τV) and enstrophy (τΩ) at Reλ = 75 for heavy, neutrally buoyant, and light particles
as shown in figure 10(a). We observe that τV for light particles is always larger than
heavy and neutrally buoyant particles in the St range 0.1 to 4, with a peak around
St = 1. This suggests that the light particles cluster for a longer time in the range of St
studied.

It is well known that flow regions of high enstrophy trap bubbles and regions with
intense strain accumulate heavy particles. Figure 10(a) also shows that τV for both
light and heavy particles is much larger than their decorrelation time of enstrophy τΩ
for all St from 0.1 to 4. This is more clearly seen in figure 10(b), where the ratio
τV/τΩ for both light and heavy particles is greater than unity for all St , while this ratio
is always close to unity for the neutrally buoyant particles. Remarkably, this means
that the lifetimes of the clustered bubbles and heavy particles are much longer than the
lifetime of the trapping flow structures themselves. The interpretation is that clustered
particles are constrained in different regions of the flow and due to their inertia need
time to reorganize themselves in the flow after sudden changes in flow conditions.
However, neutrally buoyant particles do not have this constraint and are distributed
more evenly at any given time in the flow. Figure 10(b) shows that the ratio τV/τΩ
for light particles has a weakly decreasing trend at St larger than unity. The ratio
τV/τΩ for heavy particles monotonically increases with increasing St , and it is larger
compared to light particles for St > 0.5.

4. Conclusion
We use three-dimensional Voronoı̈ analysis to study particle clustering in

homogeneous isotropic turbulence with both numerical data in the point particle limit
and one experimental data set. The analysis is applied to inertial particles (light,
neutrally buoyant, and heavy) of different density ratios β, St ranging from 0.1 to 4
and two different Taylor–Reynolds numbers (Reλ = 75 and 180). In the entire range



214 Y. Tagawa and others

of parameters covered, the Voronoı̈ volume p.d.f.s of neutrally buoyant particles agree
well with the 0-distribution for randomly distributed particles. At a fixed value of St ,
the p.d.f.s of Voronoı̈ volumes of light and heavy particles show higher probability of
having small and large Voronoı̈ volumes than randomly distributed particles, reflecting
the clustering behaviour. The standard deviation of normalized Voronoı̈ volumes
σ/σ0 is used as an indicator to quantify the clustering. Heavy particles show some
clustering, and light particles have a much stronger clustering. Both heavy and light
particles show a stronger clustering for higher Reλ. The maximum clustering for light
particles is around St ≈ 1–2 for both Taylor–Reynolds numbers, and this maximum
clustering range has a consistent trend with that of the Kaplan–Yorke analysis. We
check the effect of number of particles on the value of the indicator and find that the
clustering trend is robust for a given number of particles.

For one (small) Stokes number St = 0.04 ± 0.02 we have also extracted the three-
dimensional Voronoı̈ volume p.d.f. from experimental data. Though the p.d.f. fits
into the general trend – at these small Stokes numbers the p.d.f. nearly follows a
0-distribution – a quantitative analysis shows that the experimental p.d.f. of three-
dimensional Voronoı̈ volumes is slightly broader than that obtained from point–particle
simulations. More experiments with larger Stokes numbers will have to be done
to judge whether this is a limitation of the point–particle approach, a consequence
of the neglect of two-way and four-way coupling in the numerics, or whether the
experimental data are not precise enough. From our point of view, the Voronoı̈
analysis is an excellent means to quantitatively compare clustering effects of particles
in experimental and numerical data sets.

Finally, we show that the Voronoı̈ analysis can be connected to local flow properties
such as enstrophy. By comparing the joint p.d.f.s of enstrophy and Voronoı̈ volumes
and their Lagrangian autocorrelation, the clustering behaviour of heavy, neutrally
buoyant, and light particles can be further distinguished. It is found that the light
particles strongly cluster in flow regions with very high enstrophy, whereas heavy
particles weakly cluster in low enstrophy regions for all St in the present study. From
the Lagrangian autocorrelation of Voronoı̈ volumes we conclude that the clustering of
light particles lasts much longer than that of heavy or neutrally buoyant particles. And
because of inertial effects due to the density difference from the carrying fluid, light
and heavy particles remain clustered for a much longer time than the flow structures
themselves.
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