This is a paper about multi-fractal scaling and dissipation in a shell model
of turbulence, called the GOY model. This set of equations describes a one
dimensional cascade of energy towards higher wave vectors. When the model is
chaotic, the high-wave-vector velocity is a product of roughly independent
multipliers, one for each logarithmic momentum shell. The appropriate tool for
studying the multifractal properties of this model is shown to be the energy
current on each shell rather than the velocity on each shell. Using this
quantity, one can obtain better measurements of the deviations from Kolmogorov
scaling (in the GOY dynamics) than were available up to now. These deviations
are seen to depend upon the details of inertial-range structure of the model
and hence are {\em not} universal. However, once the conserved quantities of
the model are fixed to have the same scaling structure as energy and helicity,
these deviations seem to depend only weakly upon the scale parameter of the
model. We analyze the connection between multifractality in the velocity
distribution and multifractality in the dissipation. Our arguments suggest that
the connection is universal for models of this character, but the model has a
different behavior from that of real turbulence. We also predict the scaling
behavior of time correlations of shell-velocities, of the dissipation,Comment: Revised Versio