4,181 research outputs found

    Line tension and wettability of nanodrops on curved surfaces

    Get PDF
    In this paper we study the formation of nanodrops on curved surfaces (both convex and concave) by means of molecular dynamics simulations, where the particles interact via a Lennard-Jones potential. We find that the contact angle is not affected by the curvature of the substrate, in agreement with previous experimental findings. This means that the change in curvature of the drop in response to the change in curvature of the substrate can be predicted from simple geometrical considerations, under the assumption that the drop's shape is a spherical cap, and that the volume remains unchanged through the curvature. The resulting prediction is in perfect agreement with the simulation results, for both convex and concave substrates. In addition, we calculate the line tension, namely by fitting the contact angle for different size drops to the modified Young equation. We find that the line tension for concave surfaces is larger than for convex surfaces, while for zero curvature it has a clear maximum. This feature is found to be correlated with the number of particles in the first layer of the liquid on the surface

    Dimensionality and morphology of particle and bubble clusters in turbulent flow

    Get PDF
    We conduct numerical experiments to investigate the spatial clustering of particles and bubbles in simulations of homogeneous and isotropic turbulence. Varying the Stokes parameter and the densities, striking differences in the clustering of the particles can be observed. To quantify these visual findings we use the Kaplan--Yorke dimension. This local scaling analysis shows a dimension of approximately 1.4 for the light bubble distribution, whereas the distribution of very heavy particles shows a dimension of approximately 2.4. However, clearly separate parameter combinations yield the same dimensions. To overcome this degeneracy and to further develop the understanding of clustering, we perform a morphological (geometrical and topological) analysis of the particle distribution. For such an analysis, Minkowski functionals have been successfully employed in cosmology, in order to quantify the global geometry and topology of the large-scale distribution of galaxies. In the context of dispersed multiphase flow, these Minkowski functionals -- being morphological order parameters -- allow us to discern the filamentary structure of the light particle distribution from the wall-like distribution of heavy particles around empty interconnected tunnels.Comment: 12 pages, 8 figure

    Small-number statistics near the clustering transition in a compartementalized granular gas

    Get PDF
    Statistical fluctuations are observed to profoundly influence the clustering behavior of granular material in a vibrated system consisting of two connected compartments. When the number of particles N is sufficiently large sN<300 is sufficientd, the clustering follows the lines of a standard second-order phase transition and a mean-field description works. For smaller N, however, the enhanced influence of statistical fluctuations breaks the mean-field behavior. We quantitatively describe the competition between fluctuations and mean-field behavior sas a function of Nd using a dynamical flux model and molecular dynamics simulations

    The clustering morphology of freely rising deformable bubbles

    Get PDF
    We investigate the clustering morphology of a swarm of freely rising deformable bubbles. A three-dimensional Vorono\"i analysis enables us to quantitatively distinguish between two typical clustering configurations: preferential clustering and a grid-like structure. The bubble data is obtained from direct numerical simulations (DNS) using the front-tracking method. It is found that the bubble deformation, represented by the aspect ratio \chi, plays a significant role in determining which type of clustering is realized: Nearly spherical bubbles with \chi <~ 1.015 form a grid-like structure, while more deformed bubbles show preferential clustering. Remarkably, this criteria for the clustering morphology holds for different diameters of the bubbles, surface tension, and viscosity of the liquid in the studied parameter regime. The mechanism of this clustering behavior is connected to the amount of vorticity generated at the bubble surfaces.Comment: 10 pages, 5 figure

    Integrating Philosophy of Science Into Research on Ethical, Legal and Social Issues in the Life Sciences

    Get PDF
    This paper argues that research on normative issues in the life sciences will benefit from a tighter integration of philosophy of science. We examine research on ethical, legal and social issues in the life sciences (“ELSI”) and discuss three illustrative examples of normative issues that arise in different areas of the life sciences. These examples show that important normative questions are highly dependent on epistemic issues which so far have not been addressed sufficiently in ELSI, RRI and related areas of research. Accordingly, we argue for the integration of research on the epistemic aspects of the relevant areas of science into ELSI research to provide a better basis for addressing normative questions

    Differential Signaling Profiles of MC4R Mutations with Three Different Ligands

    Get PDF
    The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin-melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and β-arrestin2 recruitment, using the two endogenous agonists, α- and β-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations

    Linescan microscopy data to extract diffusion coefficient of a fluorescent species using a commercial confocal microscope

    Get PDF
    We are grateful to the Max Delbrück Center for Molecular Medicine in the Helmholtz Association for core support and funding. P.A. and M.J.L. would like to acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 421152132-SFB1423 subproject C03.We report here on the measurement of the diffusion coefficient of fluorescent species using a commercial microscope possessing a resonant scanner. Sequential linescans with a rate of up to 12 kHz yield a temporal resolution of 83 μs, making the setup amenable to measure diffusion rates over a range covering at least three orders of magnitude, from 100 μm2/s down to 0.1 μm2/s. We share representative data sets covering (i) the diffusion of a dye molecule, observed in media of different viscosities and (ii) the diffusion of a prototypical membrane receptor.  The data can be valuable for researchers interested in the rapid diffusion properties of nuclear, cytosolic or membrane bound proteins fused to fluorescent tags.Publisher PDFPeer reviewe

    Polarization of Migrating Monocytic Cells Is Independent of PI 3-Kinase Activity

    Get PDF
    BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A)-adrenoceptor (alpha(2A)AR) display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET) of alpha(2A)AR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the attractant cue. Polarized monocytes, which display typical amoeboid like motility, can rapidly develop a new leading edge facing the highest chemoattractant concentration at any site of the plasma membrane, including the uropod. The process appears to be independent of PI 3-kinase activity
    corecore