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ABSTRACT: In this work we study the formation of
nanodrops on curved surfaces (both convex and concave) by
means of molecular dynamics simulations, where the particles
interact via a Lennard-Jones potential. We find that the contact
angle is not affected by the curvature of the substrate, in
agreement with previous experimental findings. This means
that the change in curvature of the drop in response to the
change in curvature of the substrate can be predicted from
simple geometrical considerations, under the assumption that
the drop’s shape is a spherical cap, and that the volume
remains unchanged through the curvature. The resulting
prediction is in perfect agreement with the simulation results, for both convex and concave substrates. In addition, we calculate
the line tension, namely, by fitting the contact angle for different size drops to the modified Young equation. We find that the line
tension for concave surfaces is larger than for convex surfaces, while for zero curvature it has a clear maximum. This feature is
found to be correlated with the number of particles in the first layer of the liquid on the surface.

■ INTRODUCTION

The line tension is a key property for understanding the
behavior of nanodrops and, thereby, of great technological
relevance for lithography techniques or in micro- and
nanofluidics.1−4 On curved surfaces the line tension is of great
significance for froth floatation, microporous solid, and
condensation on nanorods.5 Due to the small magnitude of
line tension, it can affect wetting properties at the nanoscale
without having any effect on the micro- or macroscale.
Understanding, and hence predicting, the line tension of
nanodrops is nontrivial. Although there have been a number of
theoretical and experimental studies on the subject, up to
recently there was no consensus even on the sign nor on the
order of magnitude.6

The concept of line tension was introduced more than a
century ago by Gibbs,7 who concluded that interactions at the
three-phase contact line cannot be explained by surface free
energies of each pair of phases alone. He defined the line
tension as the excess free energy per unit length of a contact
line of three phases, analogous to surface tension, which is the
excess free energy per unit area. In 1937, Harkins8 managed to
theoretically calculate the order of magnitude of line tension
from the relation between latent heat of vaporization and the
free, latent, and total energy of the three-phase contact line. In
1977, Pethica1 defined line tension for a liquid drop on an ideal
solid surface. He included the line tension in the conditions for
equilibrium in the free energy expression, which when
minimized with respect to the contact angle at constant
volume, gives the so-called modified Young equation:
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where θ is the contact angle and R is the radius of curvature of
the contact circle of the liquid drop on an ideal (chemically and
geometrically homogeneous) solid surface when it is in
equilibrium with its own vapor, as illustrated in Figure 1. In
eq 1, τ is the line tension, θY is Young contact angle, and γSL,
γSV, and γLV are the solid−liquid, solid−vapor, and liquid−vapor
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Figure 1. Definition of the various geometrical parameters used in this
work, for (a) the convex surface and (b) the concave surface. Three
different radii of curvatures can be identified: radius of surface
curvature (RS), radius of drop curvature (Rd), and radius of curvature
of the contact line (R). Note that we define RS such that for the convex
surface it has a positive value and for the concave surface a negative
value.
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surface tensions, respectively. In eq 1, we have not considered
the effect of curvature of the liquid−vapor interface on the
surface tension,9 because if these effects become comparable in
magnitude to the line tension, then the measured τ cannot be
considered as “pure” line tension, but as an apparent line
tension.6,10

The magnitude of the line tension has been calculated from
the free energy associated with the three-phase contact line
using density functional theory11,12 or a model based on the
interface displacement.13,14 Most of these theoretical analyses
predict a value of the line tension in the range of 10−12 to 10−11

N. Experimental investigations show that the order of
magnitude of an effective line tension varies from 10−5 to
10−12 N with both positive and negative signs,2,6,15−19 which
basically only shows how challenging it is to measure the line
tension experimentally. The primary reason for this variation is
the contact angle hysteresis caused by surface heterogeneities,
either geometric or chemical, which are always present for an
actual experimental situation. But also the extremely low size
range of the drops makes it very difficult to measure the line
tension experimentally. For example, in the case of water drops
with a surface tension of 0.072 N/m and a line tension of 10−11

N (the most consistent order of magnitude reported in
literature), the line tension becomes significant only for contact
line curvatures of around 5 nm.20

Studies have not been confined to flat surfaces. Extrand and
Moon21 have investigated the dependence of contact angle on
surface curvatures experimentally, however for drop sizes in the
micro- and millimeter range. Marmur and Krasovitski22 have
calculated the line tension on spherical surfaces from theoretical
calculations, but it lacks validation from experimental or
simulation data.
Apart from theoretical and experimental research, there have

also been a number of studies on the line tension and
measurement of contact angle using molecular dynamics
simulations.23−26 Such simulations have the advantage that
the line tension can be calculated with relatively large accuracy,
and also the heterogeneities can be well-controlled. Shi and
Dhir24 studied the behavior of the contact angle of drops on a
plane solid substrate as a function of temperature and force
field parameters, using a simple Lennard-Jones model (as
described in the next section), as well as a more advanced
model potential for water. Ingebrigtsen and Toxvaerd25 have
calculated the contact angles for drops of different sizes and
observed that the contact angle from MD simulations disagrees
with the Young contact angle for nanodrops which have a very
small contact angle. Weijs et al.23 have analyzed the effect of
line tension by measuring contact angles of droplets on a plane
substrate by varying the droplet size and found that the line
tension decreases with increasing θY.
In the present work, we have extended the simulation by

Weijs et al.23 to curved substrates. Simulations have been
performed in 3D, that is, for spherical drops, and in quasi-2D
(where one dimension is considerably smaller than the other
two), to which we refer as cylindrical drops. Cylindrical drops
give the value of θY as the contact line is free from any
curvature and hence the contact angle does not change with the
size of the drop. The effect of the curvature on the contact line
can then be predicted by calculating the contact angle for
spherical drops of different sizes and comparing it with θY. In
this way, we have systematically studied the effect of surface
curvature on the magnitude of the line tension and wettability
of nanodrops on curved surfaces.

■ NUMERICAL METHOD
Molecular Dynamics Simulations of Nanodrops. Molecular

dynamics (MD) simulations were performed to simulate the drop on a
solid substrate for which we used the open source code GROMACS.27

Two kinds of particles were used in the simulations: solid substrate
particles, which are held fixed in a fcc lattice setting during the whole
simulation, and liquid/vapor particles, which are free to move and in
the equilibrium-state form in a liquid drop on the solid substrate, with
a vapor phase filling the remaining volume. The interaction between
the particles is described by Lennard-Jones potential:
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in which ϵij is the interaction strength between particles i and j and σij
is the characteristic size of particles, which is set to a value σ = 0.34 nm
for all interactions. The potential is truncated at a relatively large cutoff
radius of rc = 5σ. The time step for updating the particle velocities and

positions was set at σ= ϵt md ( / )/400LL , where m is the mass of the
particles and ϵLL = 3 kJ/mol is the Lennard-Jones interaction
parameter for the liquid phase. Simulations have been performed in an
NVT ensemble where the temperature is fixed at 300 K, which is below
the critical point for the Lennard-Jones parameters (σ, ϵLL) that we
have used. Periodic boundary conditions have been employed in all
three directions. We have studied two different kinds of systems to
examine the effect of line tension: quasi-2D and 3D. In quasi-2D, the
system size in one dimension is substantially less than the size of the
system in the other two dimensions. The typical dimension of the
system is 10.5σ in the x-direction and around 150σ in the y- and z-
directions, where the x-, y-, and z directions are defined in Figure 1. In
3D, the system size in all three directions is of the same order of
magnitude. The system size is such that in all cases the distance
between a drop and its neighboring image is at least 80σ. In all
simulations, the overall number density is kept constant. The
equilibrium contact angle (or wettability) of the liquid drop on the
solid substrate was varied by changing the interaction strength
between solid and liquid particles (ϵSL), from 1.0 to 2.0 kJ/mol. In all
simulations the liquid drop was found to be in equilibrium with its
own vapor, where the liquid and vapor density was found to be in
close agreement with the theoretical result as obtained from the
equation of state of the Lennard-Jones fluid.28

In the simulations, the line tension is evaluated in terms of the
tension length (l) defined as l = −τ/γLV, which is of the order of
magnitude of the molecular scale. We have calculated the magnitude of
the line tension length along the lines of Weijs et al.,23 by measuring
the equilibrium θ for different size drops and fitting a straight line to
cos θ vs 1/R, where the slope is then equal to l. Repeating these
calculations for various values of the LJ parameters then gives the
tension length (−τ/γLV) as a function of θY.

Two kinds of surface curvatures were used in this study as shown in
Figure 2: a curved outward (or convex) surface defined as a positive
curvature and a curved inward (or concave) surface defined as a
negative curvature. In order to keep the overall number density
constant, we have scaled the system dimensions while increasing the
number of particles in the simulations. We have also scaled the radius
of curvature of the surface according to the system dimensions. The
surface curvature scales with n1/2 in the case of quasi-2D and with n1/3

in the case of 3D, where n is the number of moving particles in the
simulation. Note that owing to the discrete nature of particles and the
relatively small system size, the curvature of the solid substrate is not
smooth but consists of steps, with a step height equal to the particle
diameter, as shown in Figure 2. Because of these finite steps, the three-
phase contact line will be in contact with different crystallographic axes
in each simulation. Different crystallographic axes exhibit different
surface energies which may lead to a slight change in the contact
angle.29,30 We have ignored this effect as we have averaged the contact
angle for different equilibrium profiles which means that the contact
angle calculated from our simulations is average over different
crystallographic axes. We have also ignored the effect of surface
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reconstruction as solid particles remain fixed in an fcc lattice during the
whole simulation. This occurs either with less stable metal surfaces,
semiconductor surfaces at very high temperatures, or polymer surfaces
with polar groups.31−33 We are not dealing with polar polymer groups
or high temperatures, so it is justified to ignore this effect.
Initially, the liquid particles are set in a fcc configuration close to the

solid substrate and free to move from then on at the prescribed
temperature (see Figure 2). After equilibrium has been reached, i.e.,
after around 5 × 107 time steps, the density field is calculated by
averaging over typically 1,000,000 time steps (which corresponds to
roughly 2 ns) taking into account the fluctuation of the center of mass
of the droplet. The radius of curvature of the droplet is then obtained
by fitting a sphere (circle in 2D) to the isodensity contour of 0.5 of the

normalized density field, ρ*(r), defined as ρ* = ρ ρ
ρ ρ

−
−r( )

r( ) V

L V
, where ρV

and ρL is the bulk vapor and liquid density, respectively. Since the
liquid very near to the solid substrate is subject to layering, we have
excluded the density field in the range of 2σ from the substrate for the
circular cap fitting. From the intersection of the circular fit with the
substrate, the contact angle and volume of the drop are evaluated (see
Figure 3). Note that we have split the time interval over which we

measured into 10 subsets and calculated the average of each subset in
order to evaluate a standard deviation, from which the error bars in the
results of Figures 4, 5, and 6 were obtained.

■ RESULTS AND DISCUSSION
Wettability of Cylindrical Nanodrops on Curved

Surfaces. Figure 4 shows the Young contact angle as a

function of the surface curvature, for three different values of
the liquid−solid interaction strength. It can be clearly seen that
the contact angle is unaffected by the surface curvature, which is
consistent with the experimental observations by Extrand and
Moon21 for microscopic drops. Note that Wolansky and
Marmur34 also showed theoretically that the contact angle is
independent of the shape of the surface, unless line tension is
considered. This means that curvature effects are only
prominent in nanoscale systems where the line tension is
appreciable as shown in the next section. Figure 5 shows that

also the drop volume does not change with the surface
curvature, which is expected since the volume is set by the
condition of liquid−vapor equilibrium, which to first order is
not affected by the surface curvature. In fact, the straight line in
Figure 5 is the volume of the liquid drop evaluated from the
bulk vapor−liquid equilibrium calculated from a highly accurate
equation of state of the LJ fluid for the given temperature and
overall number density.28 The slight difference with the volume

Figure 2. Example of the initial configuration (left) and the final
steady-state configuration (right) after 5 × 107 time steps of the
nanodrop simulations for convex (top) and concave (bottom)
surfaces.

Figure 3. Example of a circular cap fit (black line) to the isodensity
contour of 0.5 (points) for a drop on a convex and a concave surface
of constant curvature. The drops can freely shift on the surface due to
the statistical fluctuations. In particular, in the concave case the left
shift as compared to the initial situation (Figure 2, bottom left) is
apparent.

Figure 4. Contact angle (θ) of the nanodrop on a solid substrate as a
function of surface curvature (1/RS).

Figure 5. Volume of the nanodrop on a solid substrate as a function of
surface curvature (1/RS).
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as found in the simulations could be attributed to the effect of
the liquid−vapor surface and the solid substrate, which are not
accounted for in bulk phase equilibrium. Figure 6 shows the

variation of the radius of drop curvature (Rd) with surface
curvature (1/RS). The simulation results are found to be in very
good agreement with the prediction for Rd that follows from
straightforward geometric relations for the drop volume as a
function of the contact angle and surface curvature. In this, we
take the volume of the drop as calculated from the equation of
state, and the contact angle for a planar surface as reference
values.
Line Tension of Nanodrops on Curved Surfaces. The

line tension of LJ nanodrops has been calculated by fitting the
modified Young equation, eq 1, to the simulation data. To this
end, different sized LJ drops were simulated in 3D on the
curved surface, and the cosine of the contact angle is plotted
against the inverse of the radius of the curvature of the three-
phase contact line, 1/R, as shown in Figure 7. The slope of the
straight line fitted through the data points then gives the line
tension length l = −τ/γLV. To double check, in Figure 7, we also
show the result for cos θ for the quasi-2D system (cylindrical

drop), which as expected is not changing with the curvature of
the drop because the contact line is free of any curvature and
the line tension does not have any effect on it. According to eq
1, the two lines in Figure 7 should intersect at zero surface
curvature. However, we find a small offset, which can most
likely be contributed to the fact that the exact position of the
liquid−vapor interface is not well-defined. That is, there is a
smooth transition between the two distinct phases and many
logical definitions are available to calculate the position of the
interface. Hence quantities which are derived from the interface
location, such as contact angle, volume, and radius of curvature
of the drop, etc., will slightly vary depending on the definition,6

which may result in a slight offset from eq 1. Note also that, for
these typical values of the contact angle, only a slight error in θ
of say 1% leads to errors of 3% in cos θ, which leads even to
larger errors in the extrapolated value of the line fit.
Figure 8 shows the magnitude of the line tension length as a

function of the surface curvature normalized by Vdrop
1/3, where

Vdrop is the volume of the drop as calculated from the equation
of state for Lennard-Jones fluid.28 We find a clear maximum in
the case of the planar surface which is compatible with the
theoretical predictions;22,34 however, surprisingly we find that l
is much higher in the case of concave surfaces (negative
curvature) as compared to convex surfaces (positive curvature).
From Figure 8, we can infer that the magnitude of the surface
curvature does not have a very strong effect on the line tension
length but it is strongly dependent on the sign of the surface
curvature. We investigated this finding by analyzing the
arrangement of particles very close to the surface. In Figure
9, we have plotted the variation of density of particles and the
absolute number of particles in a drop as a function of distance
from the surface. Both quantities are evaluated from the time-
averaged number of particles for concentric spherical shells or
layers of thickness 0.1σ. The variation in the absolute number
of particles is determined by averaging the number of particles
in each layer over time. Density in each layer is then calculated
by dividing the absolute number of particles in each layer by the
volume of that layer. It can be seen that the amplitude of the
oscillations in the density is much larger in the case of the
planar surface as compared to the curved ones, yet the
difference in density oscillations between positive and negative
surface curvature is small. However, the variation in the number
of particles in the drop as a function of distance from the
surface clearly shows the difference between the three types of

Figure 6. Radius of curvature, (Rd) of the nanodrop on a solid
substrate as a function of surface curvature (1/RS).

Figure 7. Results from the simulation for the contact angle on a
concave surface with Vdrop

1/3/RS = −0.2 as a function of the curvature
of the base circles (σ/R). The circles are the results for spherical drops,
while the squares are for cylindrical drops. Straight lines are the linear
fit through the data points. The slope of the straight line for spherical
drops gives the line tension length l = −τ/γLV.

Figure 8. Variation of l as a function of Vdrop
1/3/RS. Note that smaller

moduli of Vdrop
1/3/RS are not possible due to the graininess of the

surface particles.
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surfaces. The amplitude of the first peak is maximal in the case
of a flat surface, then followed by the peak of negative and
positive surface curvature, respectively. This trend is directly
correlated with the magnitude of the line tension length, which
suggest that more particles in layers close to the surface imply a
larger line tension. Note that the absolute number of particles
and the density of particles as a function of distance are related
to each other by the volume of each layer. Since the density of
particles is almost the same for both curvatures, this implies
that the volume of layers very close to the surface is larger in
the case of a concave surface. We have also analyzed the
structure of the particles very near to the surface by evaluating
radial distribution functions or pair correlation functions for
particles in the first two layers as shown in Figure 10. The
magnitude of the second peak in the radial distribution function
is marginally larger in the case of curved surfaces as compared
to the plane surface, but there is no difference between positive

and negative surface curvatures which indicates that it is the
absolute number of particles in the layers near to the surface
which is responsible for the decrease in magnitude of the line
tension and not the relative arrangement of the particles. From
Figure 11, we can see a direct proportionality between the line

tension length and the amplitude of the first oscillation of a
variation of of number of particles with the distance from the
surface.
The actual quantity of interest, the line tension, can be

calculated by multiplying the line tension length by the liquid−
vapor surface tension (γLV). Kirkwood and Buff35 showed that
the latter can be calculated by integrating the difference
between normal and tangential components of the pressure
tensor across the interface,

∫γ = −p z p z z
1
2

[ ( ) ( )] d
L

n tLV 0

z

(3)

We have used this procedure to calculate γLV from independent
molecular dynamics simulation of liquid molecules in
equilibrium with its own vapor and for a planar interface.
Note that the factor 1/2 in eq 3 is the correction for the extra
interface that is present due to periodic boundary conditions.
We again emphasize that we have not considered surface
tension as a function of interface curvature. The radius of
curvature of a nanodrop of 7 nm is required to change the
surface tension by 5% for the Lennard-Jones particles that we
are simulating.9,36 The radius of curvature of drops in our
simulations is in the range of 10 nm. So the assumption of
constant surface tension is fairly acceptable. For our Lennard-
Jones parameters, i.e., ϵLL = 3.0 kJ/mol, this procedure gave a
value of γLV = 4.1893 × 10−3 N/m. Using this value for the
surface tension, the order of magnitude of the line tension is
coming in the vicinity of 10−12 N which is very close to the
theoretical prediction and many experimental findings.2,6,11,13,19

The maximum value of the line tension is around 13 × 10−12 N
for planar surface, and the minimum value is 0.07 × 10−12 N,
which is almost zero, in the case of a convex surface.

■ CONCLUSIONS
Molecular dynamics simulations were performed for liquid
drops on curved surfaces. The Young contact angle was found
to be constant with surface curvature which is consistent with
previous experimental and theoretical predictions. The volume

Figure 9. (a) Density and (b) absolute number of particles in the drop
as a function of distance from the surface. Density of particles is
calculated by dividing the absolute number of particles by the volume
of each layer.

Figure 10. Radial distribution function of particles within two layers
from the surface.

Figure 11. Amplitude of the first peak in oscillations of variation of
number of particles as a function of the distance from the surface
plotted against the magnitude of the line tension length for various
surface curvatures. The asterisk in inset shows the peaks which are
plotted in the graph.
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of the drop is also found to be independent of the curvature of
the surface, and the radius of curvature of the drop is well-
predicted by simple geometric relations by keeping contact
angle and volume constant. The magnitude of the line tension
is calculated by MD simulation and found to be comparable
with theoretical values. The line tension strongly depends on
the sign of the surface curvature: its value is much larger in the
case of negative curvature (concave surface) as compared to
positive curvature (convex surface), while it reaches a maximum
for zero curvature. This trend is found to be correlated with the
number of particles in the initial layers of the drop. The relative
arrangement of particles near the surface is found to be the
same which means that the number of particles near the three-
phase contact line is the only significant factor which is
responsible for altering the magnitude of the line tension on
curved surfaces.
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