273 research outputs found
Recommended from our members
Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production
The ever-increasing incidence of antibiotic-resistant infections combined with a weak pipeline of new antibiotics has created a global public health crisis1. Accordingly, novel strategies for enhancing our antibiotic arsenal are needed. As antibiotics kill bacteria in part by inducing reactive oxygen species (ROS)2–4, we reasoned that targeting microbial ROS production might potentiate antibiotic activity. Here we show that ROS production can be predictably enhanced in Escherichia coli, increasing the bacteria’s susceptibility to oxidative attack. We developed an ensemble, genome-scale metabolic modeling approach capable of predicting ROS production in E. coli. The metabolic network was systematically perturbed and its flux distribution analyzed to identify targets predicted to increase ROS production. In silico–predicted targets were experimentally validated and shown to confer increased susceptibility to oxidants. Validated targets also increased susceptibility to killing by antibiotics. This work establishes a systems-based method to tune ROS production in bacteria and demonstrates that increased microbial ROS production can potentiate killing by oxidants and antibiotics
Subminimal Inhibitory Concentrations of the Disinfectant Benzalkonium Chloride Select for a Tolerant Subpopulation of Escherichia coli with Inheritable Characteristics
Exposure of Escherichia coli to a subminimal inhibitory concentration (25% below MIC) of benzalkonium chloride (BC), an antimicrobial membrane-active agent commonly used in medical and food-processing environments, resulted in cell death and changes in cell morphology (filamentation). A small subpopulation (1–5% of the initial population) survived and regained similar morphology and growth rate as non-exposed cells. This subpopulation maintained tolerance to BC after serial transfers in medium without BC. To withstand BC during regrowth the cells up regulated a drug efflux associated gene (the acrB gene, member of the AcrAB-TolC efflux system) and changed expression of outer membrane porin genes (ompFW) and several genes involved in protecting the cell from the osmotic- and oxidative stress. Cells pre-exposed to osmotic- and oxidative stress (sodium chloride, salicylic acid and methyl viologen) showed higher tolerance to BC. A control and two selected isolates showing increased BC-tolerance after regrowth in BC was genome sequenced. No common point mutations were found in the BC- isolates but one point mutation in gene rpsA (Ribosomal protein S1) was observed in one of the isolates. The observed tolerance can therefore not solely be explained by the observed point mutation. The results indicate that there are several different mechanisms responsible for the regrowth of a tolerant subpopulation in BC, both BC-specific and general stress responses, and that sub-MIC of BC may select for phenotypic variants in a sensitive E. coli culture
The Lipid Transfer Protein CERT Interacts with the Chlamydia Inclusion Protein IncD and Participates to ER-Chlamydia Inclusion Membrane Contact Sites
Bacterial pathogens that reside in membrane bound compartment manipulate the host cell machinery to establish and maintain their intracellular niche. The hijacking of inter-organelle vesicular trafficking through the targeting of small GTPases or SNARE proteins has been well established. Here, we show that intracellular pathogens also establish direct membrane contact sites with organelles and exploit non-vesicular transport machinery. We identified the ER-to-Golgi ceramide transfer protein CERT as a host cell factor specifically recruited to the inclusion, a membrane-bound compartment harboring the obligate intracellular pathogen Chlamydia trachomatis. We further showed that CERT recruitment to the inclusion correlated with the recruitment of VAPA/B-positive tubules in close proximity of the inclusion membrane, suggesting that ER-Inclusion membrane contact sites are formed upon C. trachomatis infection. Moreover, we identified the C. trachomatis effector protein IncD as a specific binding partner for CERT. Finally we showed that depletion of either CERT or the VAP proteins impaired bacterial development. We propose that the presence of IncD, CERT, VAPA/B, and potentially additional host and/or bacterial factors, at points of contact between the ER and the inclusion membrane provides a specialized metabolic and/or signaling microenvironment favorable to bacterial development
Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate
<p>Abstract</p> <p>Background</p> <p>Phosphoinositides play a central role in regulating processes at intracellular membranes. In yeast, a large number of phospholipid biosynthetic enzymes use a common mechanism for transcriptional regulation. Yet, how the expression of genes encoding lipid kinases and phosphatases is regulated remains unknown.</p> <p>Results</p> <p>Here we show that the expression of lipid phosphatase Sac1p in the yeast <it>Saccharomyces cerevisiae </it>is regulated in response to changes in phosphatidylinositol-4-phosphate (PI(4)P) concentrations. Unlike genes encoding enzymes involved in phospholipid biosynthesis, expression of the <it>SAC1 </it>gene is independent of inositol levels. We identified a novel 9-bp motif within the 5' untranslated region (5'-UTR) of <it>SAC1 </it>that is responsible for PI(4)P-mediated regulation. Upregulation of <it>SAC1 </it>promoter activity correlates with elevated levels of Sac1 protein levels.</p> <p>Conclusion</p> <p>Regulation of Sac1p expression via the concentration of its major substrate PI(4)P ensures proper maintenance of compartment-specific pools of PI(4)P.</p
Transduction of human embryonic stem cells by ecotropic retroviral vectors
The steadily increasing availability of human embryonic stem (hES) cell lines has created strong interest in applying available tools for gene transfer in murine cells to human systems. Here we present a method for the transduction of hES cells with ecotropic retroviral vectors. hES cells were transiently transfected with a construct carrying the murine retrovirus receptor mCAT1. Subsequently, the cells were exposed to replication-deficient Moloney murine leukemia virus (MoMuLV) derivatives or pseudotyped lentiviral vectors. With oncoretroviral vectors, this procedure yields overall transduction efficiencies of up to 20% and permits selection of permanently transduced clones with high frequency. Selected clones maintained expression of pluripotency-associated markers and exhibited multi-germ layer differentiation both in vitro and in vivo. HES cell-derived somatic cells including neural progeny maintained high levels of transgene expression. Lentiviral vectors pseudotyped with the MoMuLV envelope could be introduced in the same manner with efficiencies of up to 33%. Transgene expression of lentivirally transduced hES cells remained permanent after differentiation even without selection pressure. Bypassing the regulatory issues associated with the use of amphotropic retroviral systems and exploiting the large pool of existing murine vectors, this method provides a safe and versatile tool for gene transfer and lineage analysis in hES cells and their progeny
The Monofunctional Catalase KatE of Xanthomonas axonopodis pv. citri Is Required for Full Virulence in Citrus Plants
BACKGROUND: Xanthomonas axonopodis pv. citri (Xac) is an obligate aerobic phytopathogen constantly exposed to hydrogen peroxide produced by normal aerobic respiration and by the plant defense response during plant-pathogen interactions. Four putative catalase genes have been identified in silico in the Xac genome, designated as katE, catB, srpA (monofunctional catalases) and katG (bifunctional catalase). METHODOLOGY/PRINCIPAL FINDINGS: Xac catalase activity was analyzed using native gel electrophoresis and semi-quantitative RT-PCR. We demonstrated that the catalase activity pattern was regulated in different growth stages displaying the highest levels during the stationary phase. KatE was the most active catalase in this phase of growth. At this stage cells were more resistant to hydrogen peroxide as was determined by the analysis of CFU after the exposition to different H(2)O(2) concentrations. In addition, Xac exhibited an adaptive response to hydrogen peroxide, displaying higher levels of catalase activity and H(2)O(2) resistance after treatment with sub-lethal concentrations of the oxidant. In the plant-like medium XVM2 the expression of KatE was strongly induced and in this medium Xac was more resistant to H(2)O(2). A XackatE mutant strain was constructed by insertional mutagenesis. We observed that catalase induction in stationary phase was lost meanwhile the adaptive response to peroxide was maintained in this mutant. Finally, the XackatE strain was assayed in planta during host plant interaction rendering a less aggressive phenotype with a minor canker formation. CONCLUSIONS: Our results confirmed that in contrast to other Xanthomonas species, Xac catalase-specific activity is induced during the stationary phase of growth in parallel with the bacterial resistance to peroxide challenge. Moreover, Xac catalases expression pattern is modified in response to any stimuli associated with the plant or the microenvironment it provides. The catalase KatE has been shown to have an important function for the colonization and survival of the bacterium in the citrus plant during the pathogenic process. Our work provides the first genetic evidence to support a monofunctional catalase as a virulence factor in Xac
Anatomy and Taxonomic Status of the Chasmosaurine Ceratopsid Nedoceratops hatcheri from the Upper Cretaceous Lance Formation of Wyoming, U.S.A
Background: The validity of Nedoceratops hatcheri, a chasmosaurine ceratopsid dinosaur known from a single skull recovered in the Lance Formation of eastern Wyoming, U.S.A., has been debated for over a century. Some have argued that the taxon is an aberrant Triceratops, and most recently it was proposed that N. hatcheri represents an intermediate ontogenetic stage between ‘‘young adult’ ’ and ‘‘old adult’ ’ forms of a single taxon previously split into Triceratops and Torosaurus. Methodology/Principal Findings: The holotype skull of Nedoceratops hatcheri was reexamined in order to map reconstructed areas and compare the specimen with other ceratopsids. Although squamosal fenestrae are almost certainly not of taxonomic significance, some other features are unique to N. hatcheri. These include a nasal lacking a recognizable horn, nearly vertical postorbital horncores, and relatively small parietal fenestrae. Thus, N. hatcheri is tentatively considered valid, and closely related to Triceratops spp. The holotype of N. hatcheri probably represents an ‘‘old adult,’ ’ based upon bone surface texture and the shape of the horns and epiossifications on the frill. In this study, Torosaurus is maintained as a genus distinct from Triceratops and Nedoceratops. Synonymy of the three genera as ontogenetic stages of a single taxon would require cranial changes otherwise unknown in ceratopsids, including additions of ossifications to the frill and repeated alternation of bone surface texture between juvenile and adult morphotypes
LV-pIN-KDEL: a novel lentiviral vector demonstrates the morphology, dynamics and continuity of the endoplasmic reticulum in live neurones
BACKGROUND
The neuronal endoplasmic reticulum (ER) is an extensive, complex endomembrane system, containing Ca2+ pumps, and Ca2+ channels that permit it to act as a dynamic calcium store. Currently, there is controversy over the continuity of the ER in neurones, how this intersects with calcium signalling and the possibility of physical compartmentalisation. Unfortunately, available probes of ER structure such as vital dyes are limited by their membrane specificity. The introduction of ER-targeted GFP plasmids has been a considerable step forward, but these are difficult to express in neurones through conventional transfection approaches. To circumvent such problems we have engineered a novel ER-targeted GFP construct, termed pIN-KDEL, into a 3rd generation replication-defective, self-inactivating lentiviral vector system capable of mediating gene transduction in diverse dividing and post-mitotic mammalian cells, including neurones.
RESULTS
Following its expression in HEK293 (or COS-7) cells, LV-pIN-KDEL yielded a pattern of fluorescence that co-localised exclusively with the ER marker sec61beta but with no other major organelle. We found no evidence for cytotoxicity and only rarely inclusion body formation. To explore the utility of the probe in resolving the ER in live cells, HEK293 or COS-7 cells were transduced with LV-pIN-KDEL and, after 48 h, imaged directly at intervals from 1 min to several hours. LV-pIN-KDEL fluorescence revealed the endoplasmic reticulum as a tubular lattice structure whose morphology can change markedly within seconds. Although GFP can be phototoxic, the integrity of the cells and ER was retained for several weeks and even after light exposure for periods up to 24 h. Using LV-pIN-KDEL we have imaged the ER in diverse fixed neuronal cultures and, using real-time imaging, found evidence for extensive, dynamic remodelling of the neuronal ER in live hippocampal cultures, brain slices, explants and glia. Finally, through a Fluorescence Loss in Photobleaching (FLIP) approach, continuous irradiation at a single region of interest removed all the fluorescence of LV-pIN-KDEL-transduced nerve cells in explant cultures, thus, providing compelling evidence that in neurons the endoplasmic reticulum is not only dynamic but also continuous.
CONCLUSION
The lentiviral-based ER-targeted reporter, LV-pIN-KDEL, offers considerable advantages over present systems for defining the architecture of the ER, especially in primary cells such as neurones that are notoriously difficult to transfect. Images and continuous photobleaching experiments of LV-pIN-KDEL-transduced neurones demonstrate that the endoplasmic reticulum is a dynamic structure with a single continuous lumen. The introduction of LV-pIN-KDEL is anticipated to greatly facilitate a real-time visualisation of the structural plasticity and continuous nature of the neuronal ER in healthy and diseased brain tissue
A Role for Phosphatidic Acid in the Formation of “Supersized” Lipid Droplets
Lipid droplets (LDs) are important cellular organelles that govern the storage and turnover of lipids. Little is known about how the size of LDs is controlled, although LDs of diverse sizes have been observed in different tissues and under different (patho)physiological conditions. Recent studies have indicated that the size of LDs may influence adipogenesis, the rate of lipolysis and the oxidation of fatty acids. Here, a genome-wide screen identifies ten yeast mutants producing “supersized” LDs that are up to 50 times the volume of those in wild-type cells. The mutated genes include: FLD1, which encodes a homologue of mammalian seipin; five genes (CDS1, INO2, INO4, CHO2, and OPI3) that are known to regulate phospholipid metabolism; two genes (CKB1 and CKB2) encoding subunits of the casein kinase 2; and two genes (MRPS35 and RTC2) of unknown function. Biochemical and genetic analyses reveal that a common feature of these mutants is an increase in the level of cellular phosphatidic acid (PA). Results from in vivo and in vitro analyses indicate that PA may facilitate the coalescence of contacting LDs, resulting in the formation of “supersized” LDs. In summary, our results provide important insights into how the size of LDs is determined and identify novel gene products that regulate phospholipid metabolism
- …