11 research outputs found

    Adult-born neurons immature during learning are necessary for remote memory reconsolidation in rats

    Get PDF
    Memory reconsolidation, the process by which memories are again stabilized after being reactivated, has strengthened the idea that memory stabilization is a highly plastic process. To date, the molecular and cellular bases of reconsolidation have been extensively investigated particularly within the hippocampus. However, the role of adult neurogenesis in memory reconsolidation is unclear. Here, we combined functional imaging, retroviral and chemogenetic approaches in rats to tag and manipulate different populations of rat adult-born neurons. We find that both mature and immature adult-born neurons are activated by remote memory retrieval. However, only specific silencing of the adult-born neurons immature during learning impairs remote memory retrieval-induced reconsolidation. Hence, our findings show that adult-born neurons immature during learning are required for the maintenance and update of remote memory reconsolidation.Rôle de la neurogénèse hippocampique dans la reconsolidation de la mémoireDissection des mécanismes hypothalamiques impliqués dans la détection du statut nutritionnel et régulation de la prise alimentaire via les interactions entre mTORC1, les mélanocortines et les endocannabinoïdes

    Role of adult hippocampal neurogenesis in spatial memory stabilization

    No full text
    La neurogenèse hippocampique adulte fait référence à la création de neurones durant la vie adulte dans le gyrus denté de l’hippocampe. Une décennie de recherche a démontré l’importance de cette neurogenèse chez l’adulte dans les processus de mémoire. En particulier, la neurogenèse adulte est nécessaire à l’apprentissage spatial et l’apprentissage spatial lui-même augmente la survie et accélère le développement d’une population de nouveaux neurones immatures. Cependant, l’implication de ces nouveaux neurones « sélectionnés » par l’apprentissage dans le devenir de la mémoire reste incertaine. En conséquence, le travail de cette thèse porte sur l’étude du rôle de ces nouveaux neurones dans les processus de mémoire spatiale à long terme résultants de l’apprentissage d’origine, comme la restitution et la reconsolidation de la mémoire. En effet depuis plus d’un siècle, on sait qu’un apprentissage n’induit pas immédiatement une mémoire stable. Les souvenirs sont tout d’abord fragiles, puis vont au fil du temps devenir stables et insensibles aux perturbations via un processus appelé «consolidation de la mémoire». Cependant ce processus n’est pas immuable ; les souvenirs établis peuvent à nouveau devenir labiles lorsqu'ils sont rappelés ou réactivés lors d’une restitution de la mémoire. Cette déstabilisation d’une mémoire consolidée nécessite alors un nouveau processus de stabilisation appelé « reconsolidation de la mémoire ». Depuis sa découverte, la reconsolidation a vivement intéressé le milieu de la recherche sur la mémoire et un nombre croissant d’études a cherché à comprendre les mécanismes sous-tendant cette reconsolidation, en particulier dans l'hippocampe. Étonnamment, le processus de reconsolidation n’a été que très peu envisagé dans le contexte de la neurogenèse hippocampique adulte.Nous avons tout d’abord mis au point un protocole de reconsolidation de la mémoire spatiale du rat dans le labyrinthe aquatique de Morris. Cela nous a permis de montrer que les néo-neurones nés avant l’apprentissage étaient activés lors de la reconsolidation de la mémoire spatiale, ce qui n’est pas le cas des neurones issus du développement précoce. Afin de pouvoir établir une relation de causalité entre néo-neurones et processus de reconsolidation, nous avons ensuite développé un outil basé sur la technique pharmacogénétique des DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) couplés à un rétrovirus. Cet outil permet de marquer les néo-neurones à leur naissance et de les manipuler (inhiber ou stimuler l’activation) plus tard, lors des processus de mémoire à long terme. Nous avons observé que les néo-neurones immatures modifiés par l’apprentissage étaient non seulement activés par la reconsolidation mais également nécessaire à celle-ci, à l’inverse des néo-neurones matures au moment de l’apprentissage. Nous avons enfin montré que stimuler l’activité des néo-neurones au moment de la restitution de la mémoire améliorait les performances des rats dans le labyrinthe aquatique.Ensemble, ces résultats de thèse soulignent le rôle critique de la neurogenèse hippocampique adulte dans la stabilisation de la mémoire spatiale à long terme.Adult hippocampal neurogenesis refers to the creation of neurons during adult life in the dentate gyrus of the hippocampus. A decade of research has demonstrated the importance of this adult neurogenesis in memory processes. In particular, adult neurogenesis is necessary for spatial learning and spatial learning itself increases survival and accelerates the development of a population of new immature neurons. However, the involvement of these new modified / promoted / amplified / selected neurons by learning in the fate of memory remains unclear. The work of this thesis focuses on the study of the role of these new neurons in the long-term spatial memory processes resulting from the original learning, such as retrieval and reconsolidation.For more than a century, we know that learning does not immediately induce a stable memory. Memories are fragile at first and then become stable and insensitive to interferences over time, through a process called “memory consolidation". However this process is not immutable; the established memories can become labile again when they are reactivated during memory recall. This destabilization of a consolidated memory requires then a new stabilization process called "memory reconsolidation". Since its discovery, the reconsolidation process has strongly interested the memory research community and a growing number of studies have sought to understand the mechanisms underlying this reconsolidation, particularly in the hippocampus. Surprisingly, the process of reconsolidation has rarely been considered in the context of adult hippocampal neurogenesis.We first developed a protocol for memory reconsolidation of spatial memory in the Morris water maze in rats. This allowed us to show that new neurons born before learning were activated during reconsolidation of spatial memory, which is not the case of the neurons generated during the early development. In order to establish a causal relationship between new neurons and reconsolidation, we developed a tool based on the pharmacogenetic technique of DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) coupled with a retrovirus. This tool is used to tag new neurons at their birth and manipulate them (inhibit or stimulate their activation) later during long-term memory processes. We observed that the population of neurons that were immature at the time of learning are not only activated by but also necessary for reconsolidation, unlike new neurons that were mature at the time of learning. We have finally shown that stimulating the activity of new neurons during retrieval improves the performance of rats in the water maze.All together, these thesis results highlight the critical role of adult hippocampal neurogenesis in long-term spatial memory stabilization

    Rôle de la neurogenèse hippocampique adulte dans la stabilisation à long terme de la mémoire spatiale

    Get PDF
    Adult hippocampal neurogenesis refers to the creation of neurons during adult life in the dentate gyrus of the hippocampus. A decade of research has demonstrated the importance of this adult neurogenesis in memory processes. In particular, adult neurogenesis is necessary for spatial learning and spatial learning itself increases survival and accelerates the development of a population of new immature neurons. However, the involvement of these new modified / promoted / amplified / selected neurons by learning in the fate of memory remains unclear. The work of this thesis focuses on the study of the role of these new neurons in the long-term spatial memory processes resulting from the original learning, such as retrieval and reconsolidation.For more than a century, we know that learning does not immediately induce a stable memory. Memories are fragile at first and then become stable and insensitive to interferences over time, through a process called “memory consolidation". However this process is not immutable; the established memories can become labile again when they are reactivated during memory recall. This destabilization of a consolidated memory requires then a new stabilization process called "memory reconsolidation". Since its discovery, the reconsolidation process has strongly interested the memory research community and a growing number of studies have sought to understand the mechanisms underlying this reconsolidation, particularly in the hippocampus. Surprisingly, the process of reconsolidation has rarely been considered in the context of adult hippocampal neurogenesis.We first developed a protocol for memory reconsolidation of spatial memory in the Morris water maze in rats. This allowed us to show that new neurons born before learning were activated during reconsolidation of spatial memory, which is not the case of the neurons generated during the early development. In order to establish a causal relationship between new neurons and reconsolidation, we developed a tool based on the pharmacogenetic technique of DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) coupled with a retrovirus. This tool is used to tag new neurons at their birth and manipulate them (inhibit or stimulate their activation) later during long-term memory processes. We observed that the population of neurons that were immature at the time of learning are not only activated by but also necessary for reconsolidation, unlike new neurons that were mature at the time of learning. We have finally shown that stimulating the activity of new neurons during retrieval improves the performance of rats in the water maze.All together, these thesis results highlight the critical role of adult hippocampal neurogenesis in long-term spatial memory stabilization.La neurogenèse hippocampique adulte fait référence à la création de neurones durant la vie adulte dans le gyrus denté de l’hippocampe. Une décennie de recherche a démontré l’importance de cette neurogenèse chez l’adulte dans les processus de mémoire. En particulier, la neurogenèse adulte est nécessaire à l’apprentissage spatial et l’apprentissage spatial lui-même augmente la survie et accélère le développement d’une population de nouveaux neurones immatures. Cependant, l’implication de ces nouveaux neurones « sélectionnés » par l’apprentissage dans le devenir de la mémoire reste incertaine. En conséquence, le travail de cette thèse porte sur l’étude du rôle de ces nouveaux neurones dans les processus de mémoire spatiale à long terme résultants de l’apprentissage d’origine, comme la restitution et la reconsolidation de la mémoire. En effet depuis plus d’un siècle, on sait qu’un apprentissage n’induit pas immédiatement une mémoire stable. Les souvenirs sont tout d’abord fragiles, puis vont au fil du temps devenir stables et insensibles aux perturbations via un processus appelé «consolidation de la mémoire». Cependant ce processus n’est pas immuable ; les souvenirs établis peuvent à nouveau devenir labiles lorsqu'ils sont rappelés ou réactivés lors d’une restitution de la mémoire. Cette déstabilisation d’une mémoire consolidée nécessite alors un nouveau processus de stabilisation appelé « reconsolidation de la mémoire ». Depuis sa découverte, la reconsolidation a vivement intéressé le milieu de la recherche sur la mémoire et un nombre croissant d’études a cherché à comprendre les mécanismes sous-tendant cette reconsolidation, en particulier dans l'hippocampe. Étonnamment, le processus de reconsolidation n’a été que très peu envisagé dans le contexte de la neurogenèse hippocampique adulte.Nous avons tout d’abord mis au point un protocole de reconsolidation de la mémoire spatiale du rat dans le labyrinthe aquatique de Morris. Cela nous a permis de montrer que les néo-neurones nés avant l’apprentissage étaient activés lors de la reconsolidation de la mémoire spatiale, ce qui n’est pas le cas des neurones issus du développement précoce. Afin de pouvoir établir une relation de causalité entre néo-neurones et processus de reconsolidation, nous avons ensuite développé un outil basé sur la technique pharmacogénétique des DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) couplés à un rétrovirus. Cet outil permet de marquer les néo-neurones à leur naissance et de les manipuler (inhiber ou stimuler l’activation) plus tard, lors des processus de mémoire à long terme. Nous avons observé que les néo-neurones immatures modifiés par l’apprentissage étaient non seulement activés par la reconsolidation mais également nécessaire à celle-ci, à l’inverse des néo-neurones matures au moment de l’apprentissage. Nous avons enfin montré que stimuler l’activité des néo-neurones au moment de la restitution de la mémoire améliorait les performances des rats dans le labyrinthe aquatique.Ensemble, ces résultats de thèse soulignent le rôle critique de la neurogenèse hippocampique adulte dans la stabilisation de la mémoire spatiale à long terme

    A New Cell for Electrical Conductivity Measurement on Saturated Samples at Upper Crust Conditions

    No full text
    International audienceElectrical resistivity soundings are used by geophysicists to determine the structure and composition of the Earth's crust and mantle and to explore natural resources (ore, oil, gas, water). Their interpretations in terms of composition and in-situ physical conditions depend mainly on laboratory measurements of electrical conductivity of rocks at simulated crustal conditions of temperature, pressure, saturation and pore pressures. These measurements present a numbers of limitations, in particular, in the case where conductive pore fluids are present, as in the case of deep reservoir conditions, where temperature exceeds 250 A degrees C. Here, we present a new cell capable of measuring electrical conductivity of large saturated samples at confining pressure up to 200 MPa, pore pressure up to 50 MPa, and temperature up to 500 A degrees C. The measurement cell has been developed in a commercial, internally heated, gas pressure apparatus (Paterson press). It is based on the concept of "guard ring" electrode, which is adapted to samples that are jacketed by a very conductive, metallic material. Numerical modeling of the current flow in the electrical cell allowed defining the optimal cell geometry. Calibration tests have been performed on Fontainebleau sandstones saturated with electrolytes of different conductivities, up to 350 A degrees C. The resulting electrical formation factor and temperature dependence of electrical conductivity are in very good agreement with previous studies. This new cell will improve the exploration and exploitation of deep fluid reservoirs, as in unconventional, high enthalpy geothermal fields. In particular, the investigations address possible effects of fluid-rock interactions on electrical resistivity of a reservoir host rock

    Bibliographie

    No full text
    corecore