24 research outputs found

    Land-use drives the temporal stability and magnitude of soil microbial functions and modulates climate effects

    Get PDF
    Soil microbial community functions are essential indicators of ecosystem multifunctionality in managed land-use systems. Going forward, the development of adaptation strategies and predictive models under future climate scenarios will require a better understanding of how both land-use and climate disturbances influence soil microbial functions over time. Between March and November 2018, we assessed the effects of climate change on the magnitude and temporal stability of soil basal respiration, soil microbial biomass and soil functional diversity across a range of land-use types and intensities in a large-scale field experiment. Soils were sampled from five common land-use types including conventional and organic croplands, intensive and extensive meadows, and extensive pastures, under ambient and projected future climate conditions (reduced summer precipitation and increased temperature) at the Global Change Experimental Facility (GCEF) in Bad Lauchstädt, Germany. Land-use and climate treatment interaction effects were significant in September, a month when precipitation levels slightly rebounded following a period of drought in central Germany: compared to ambient climate, in future climate treatments, basal respiration declined in pastures and increased in intensive meadows, functional diversity declined in pastures and croplands, and respiration-to-biomass ratio increased in intensive and extensive meadows. Low rainfall between May and August likely strengthened soil microbial responses toward the future climate treatment in September. Although microbial biomass showed declining levels in extensive meadows and pastures under future climate treatments, overall, microbial function magnitudes were higher in these land-use types compared to croplands, indicating that improved management practices could sustain high microbial ecosystem functioning in future climates. In contrast to our hypothesis that more disturbed land-use systems would have destabilized microbial functions, intensive meadows and organic croplands showed stabilized soil microbial biomass compared to all other land-use types, suggesting that temporal stability, in addition to magnitude-based measurements, may be useful for revealing context-dependent effects on soil ecosystem functioning

    Do Invasive Earthworms Affect the Functional Traits of Native Plants?

    Get PDF
    As ecosystem engineers, invasive earthworms are one of the main drivers of plant community changes in North American forests previously devoid of earthworms. One explanation for these community changes is the effects of earthworms on the reproduction, recruitment, and development of plant species. However, few studies have investigated functional trait responses of native plants to earthworm invasion to explain the mechanisms underlying community changes. In a mesocosm (Ecotron) experiment, we set up a plant community composed of two herb and two grass species commonly found in northern North American forests under two earthworm treatments (presence vs. absence). We measured earthworm effects on above- and belowground plant biomass and functional traits after 3 months of experiment. Our results showed that earthworm presence did not significantly affect plant community biomass and cover. Furthermore, only four out of the fifteen above- and belowground traits measured were affected by earthworm presence. While some traits, such as the production of ramets, the carbon and nitrogen content of leaves, responded similarly between and within functional groups in the presence or absence of earthworms, we observed opposite responses for other traits, such as height, specific leaf area, and root length within some functional groups in the presence of earthworms. Plant trait responses were thus species-specific, although the two grass species showed a more pronounced response to earthworm presence with changes in their leaf traits than herb species. Overall, earthworms affected some functional traits related to resource uptake abilities of plants and thus could change plant competition outcomes over time, which could be an explanation of plant community changes observed in invaded ecosystems

    Climate change and cropland management compromise soil integrity and multifunctionality

    Get PDF
    Soils provide essential ecosystem functions that are threatened by climate change and intensified land use. We explore how climate and land use impact multiple soil function simultaneously, employing two datasets: (1) observational – 456 samples from the European Land Use/Land Cover Area Frame Survey; and (2) experimental – 80 samples from Germany’s Global Change Experimental Facility. We aim to investigate whether manipulative field experiment results align with observable climate, land use, and soil multifunctionality trends across Europe, measuring seven ecosystem functions to calculate soil multifunctionality. The observational data showed Europe-wide declines in soil multifunctionality under rising temperatures and dry conditions, worsened by cropland management. Our experimental data confirmed these relationships, suggesting that changes in climate will reduce soil multifunctionality across croplands and grasslands. Land use changes from grasslands to croplands threaten the integrity of soil systems, and enhancing soil multifunctionality in arable systems is key to maintain multifunctionality in a changing climate

    Large-scale drivers of relationships between soil microbial properties and organic carbon across Europe

    Get PDF
    [Aim] Quantify direct and indirect relationships between soil microbial community properties (potential basal respiration, microbial biomass) and abiotic factors (soil, climate) in three major land-cover types.[Location] Europe.[Time period] 2018.[Major taxa studied] Microbial community (fungi and bacteria).[Methods] We collected 881 soil samples from across Europe in the framework of the Land Use/Land Cover Area Frame Survey (LUCAS). We measured potential soil basal respiration at 20 ºC and microbial biomass (substrate-induced respiration) using an O2-microcompensation apparatus. Soil and climate data were obtained from the same LUCAS survey and online databases. Structural equation models (SEMs) were used to quantify relationships between variables, and equations extracted from SEMs were used to create predictive maps. Fatty acid methyl esters were measured in a subset of samples to distinguish fungal from bacterial biomass.[Results] Soil microbial properties in croplands were more heavily affected by climate variables than those in forests. Potential soil basal respiration and microbial biomass were correlated in forests but decoupled in grasslands and croplands, where microbial biomass depended on soil carbon. Forests had a higher ratio of fungi to bacteria than grasslands or croplands.[Main conclusions] Soil microbial communities in grasslands and croplands are likely carbon-limited in comparison with those in forests, and forests have a higher dominance of fungi indicating differences in microbial community composition. Notably, the often already-degraded soils of croplands could be more vulnerable to climate change than more natural soils. The provided maps show potentially vulnerable areas that should be explicitly accounted for in future management plans to protect soil carbon and slow the increasing vulnerability of European soils to climate change.The LUCAS Soil sample collection is supported by the Directorate-General Environment (DG-ENV), Directorate-General Agriculture and Rural Development (DG-AGRI), Directorate-General Climate Action (DG-CLIMA) and Directorate-General Eurostat (DG-ESTAT) of the European Commission. F. Bastida thanks the Spanish Ministry and European Regional Development Fund (FEDER) funds for the project AGL2017–85755-R (AEI/FEDER, UE), the i-LINK+ 2018 (LINKA20069) from CSIC, and funds from ‘Fundación Séneca’ from Murcia Province (19896/GERM/15). M.C.R. acknowledges support from an European Research Commission (ERC) Advanced Grant (694368). This project was funded by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig of the German Research Foundation (FZT 118-202548816).Peer reviewe

    Do Invasive Earthworms Affect the Functional Traits of Native Plants?

    Get PDF
    International audienceAs ecosystem engineers, invasive earthworms are one of the main drivers of plant community changes in North American forests previously devoid of earthworms. One explanation for these community changes is the effects of earthworms on the reproduction, recruitment, and development of plant species. However, few studies have investigated functional trait responses of native plants to earthworm invasion to explain the mechanisms underlying community changes. In a mesocosm (Ecotron) experiment, we set up a plant community composed of two herb and two grass species commonly found in northern North American forests under two earthworm treatments (presence vs. absence). We measured earthworm effects on above- and belowground plant biomass and functional traits after 3 months of experiment. Our results showed that earthworm presence did not significantly affect plant community biomass and cover. Furthermore, only four out of the fifteen above- and belowground traits measured were affected by earthworm presence. While some traits, such as the production of ramets, the carbon and nitrogen content of leaves, responded similarly between and within functional groups in the presence or absence of earthworms, we observed opposite responses for other traits, such as height, specific leaf area, and root length within some functional groups in the presence of earthworms. Plant trait responses were thus species-specific, although the two grass species showed a more pronounced response to earthworm presence with changes in their leaf traits than herb species. Overall, earthworms affected some functional traits related to resource uptake abilities of plants and thus could change plant competition outcomes over time, which could be an explanation of plant community changes observed in invaded ecosystems

    Influence of <it>in vitro </it>supplementation with lipids from conventional and Alpine milk on fatty acid distribution and cell growth of HT-29 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To date, the influence of milk and dairy products on carcinogenesis remains controversial. However, lipids of ruminant origin such as conjugated linoleic acids (CLA) are known to exhibit beneficial effects <it>in vitro </it>and <it>in vivo</it>. The aim of the present study was to determine the influence of milk lipids of different origin and varying quality presenting as free fatty acid (FFA) solutions on cellular fatty acid distribution, cellular viability, and growth of human colon adenocarcinoma cells (HT-29).</p> <p>Methods</p> <p>FAME of conventional and Alpine milk lipids (ML<sub>con</sub>, ML<sub>alp</sub>) and cells treated with FFA derivatives of milk lipids were analyzed by means of GC-FID and Ag<sup>+</sup>-HPLC. Cellular viability and growth of the cells were determined by means of CellTiter-Blue<sup>®</sup>-assay and DAPI-assay (4',6-diamidino-2-phenylindole dihydrochloride), respectively.</p> <p>Results</p> <p>Supplementation with milk lipids significantly decreased viability and growth of HT-29 cells in a dose- and time-dependent manner. ML<sub>alp </sub>showed a lower SFA/MUFA ratio, a 8 fold increased CLA content, and different CLA profile compared to ML<sub>con </sub>but did not demonstrate additional growth-inhibitory effects. In addition, total concentration and fatty acid distribution of cellular lipids were altered. In particular, treatment of the cells yielded highest amounts of two types of milk specific major fatty acids (μg FA/mg cellular protein) after 8 h of incubation compared to 24 h; 200 μM of ML<sub>con </sub>(C16:0, 206 ± 43), 200 μM of ML<sub>alp </sub>(C18:1 <it>c</it>9, (223 ± 19). Vaccenic acid (C18:1 <it>t</it>11) contained in milk lipids was converted to <it>c</it>9,<it>t</it>11-CLA in HT-29 cells. Notably, the ratio of <it>t</it>11,<it>c</it>13-CLA/<it>t</it>7,<it>c</it>9-CLA, a criterion for pasture feeding of the cows, was significantly changed after incubation for 8 h with lipids from ML<sub>alp </sub>(3.6 - 4.8), compared to lipids from ML<sub>con </sub>(0.3 - 0.6).</p> <p>Conclusions</p> <p>Natural lipids from conventional and Alpine milk showed similar growth inhibitory effects. However, different changes in cellular lipid composition suggested a milk lipid-depending influence on cell sensitivity. It is expected that similar changes may also be evident in other cell lines. To our knowledge, this is the first study showing a varied impact of complex milk lipids on fatty acid distribution in a colon cancer cell line.</p

    Do Invasive Earthworms Affect the Functional Traits of Native Plants?

    No full text
    As ecosystem engineers, invasive earthworms are one of the main drivers of plant community changes in North American forests previously devoid of earthworms. One explanation for these community changes is the effects of earthworms on the reproduction, recruitment, and development of plant species. However, few studies have investigated functional trait responses of native plants to earthworm invasion to explain the mechanisms underlying community changes. In a mesocosm (Ecotron) experiment, we set up a plant community composed of two herb and two grass species commonly found in northern North American forests under two earthworm treatments (presence vs. absence). We measured earthworm effects on above- and belowground plant biomass and functional traits after 3 months of experiment. Our results showed that earthworm presence did not significantly affect plant community biomass and cover. Furthermore, only four out of the fifteen above- and belowground traits measured were affected by earthworm presence. While some traits, such as the production of ramets, the carbon and nitrogen content of leaves, responded similarly between and within functional groups in the presence or absence of earthworms, we observed opposite responses for other traits, such as height, specific leaf area, and root length within some functional groups in the presence of earthworms. Plant trait responses were thus species-specific, although the two grass species showed a more pronounced response to earthworm presence with changes in their leaf traits than herb species. Overall, earthworms affected some functional traits related to resource uptake abilities of plants and thus could change plant competition outcomes over time, which could be an explanation of plant community changes observed in invaded ecosystems

    Do Invasive Earthworms Affect the Functional Traits of Native Plants?

    No full text
    As ecosystem engineers, invasive earthworms are one of the main drivers of plant community changes in North American forests previously devoid of earthworms. One explanation for these community changes is the effects of earthworms on the reproduction, recruitment, and development of plant species. However, few studies have investigated functional trait responses of native plants to earthworm invasion to explain the mechanisms underlying community changes. In a mesocosm (Ecotron) experiment, we set up a plant community composed of two herb and two grass species commonly found in northern North American forests under two earthworm treatments (presence vs. absence). We measured earthworm effects on above- and belowground plant biomass and functional traits after 3 months of experiment. Our results showed that earthworm presence did not significantly affect plant community biomass and cover. Furthermore, only four out of the fifteen above- and belowground traits measured were affected by earthworm presence. While some traits, such as the production of ramets, the carbon and nitrogen content of leaves, responded similarly between and within functional groups in the presence or absence of earthworms, we observed opposite responses for other traits, such as height, specific leaf area, and root length within some functional groups in the presence of earthworms. Plant trait responses were thus species-specific, although the two grass species showed a more pronounced response to earthworm presence with changes in their leaf traits than herb species. Overall, earthworms affected some functional traits related to resource uptake abilities of plants and thus could change plant competition outcomes over time, which could be an explanation of plant community changes observed in invaded ecosystems

    Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity

    Get PDF
    Droughts associated with climate change alter ecosystem functions, especially in systems characterized by low biodiversity, such as agricultural fields. Management strategies aimed at buffering climate change effects include the enhancement of intraspecific crop diversity as well as the diversity of beneficial interactions with soil biota, such as arbuscular mycorrhizal fungi (AMF). However, little is known about reciprocal relations of crop and AMF diversity under drought conditions. To explore the interactive effects of plant genotype richness and AMF richness on plant yield under ambient and drought conditions, we established fully crossed diversity gradients in experimental microcosms. We expected highest crop yield and drought tolerance at both high barley and AMF diversity. While barley richness and AMF richness altered the performance of both barley and AMF, they did not mitigate detrimental drought effects on the plant and AMF. Root biomass increased with mycorrhiza colonization rate at high AMF richness and low barley richness. AMF performance increased under higher richness of both barley and AMF. Our findings indicate that antagonistic interactions between barley and AMF may occur under drought conditions, particularly so at higher AMF richness. These results suggest that unexpected alterations of plant-soil biotic interactions could occur under climate change
    corecore