394 research outputs found

    Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy

    Get PDF
    Autologous stem cells that have been genetically modified to express dystrophin are a possible means of treating Duchenne Muscular Dystrophy (DMD). To maximize the therapeutic effect, dystrophin construct needs to contain as many functional motifs as possible, within the packaging capacity of the viral vector. Existing dystrophin constructs used for transduction of muscle stem cells do not contain the nNOS binding site, an important functional motif within the dystrophin gene. In this proof-of-concept study, using stem cells derived from skeletal muscle of a DMD patient (mdcs) transplanted into an immunodeficient mouse model of DMD, we report that two novel dystrophin constructs, C1 (ΔR3-R13) and C2 (ΔH2-R23), can be lentivirally transduced into mdcs and produce dystrophin. These dystrophin proteins were functional in vivo, as members of the dystrophin glycoprotein complex were restored in muscle fibres containing donor-derived dystrophin. In muscle fibres derived from cells that had been transduced with construct C1, the largest dystrophin construct packaged into a lentiviral system, nNOS was restored. The combination of autologous stem cells and a lentivirus expressing a novel dystrophin construct which optimally restores proteins of the dystrophin glycoprotein complex may have therapeutic application for all DMD patients, regardless of their dystrophin mutation

    A Phase 2 Study of AMO-02 (tideglusib) in Congenital and Childhood Onset Myotonic Dystrophy Type 1 (DM1)

    Get PDF
    Background: GSK3β is an intracellular regulatory kinase that is dysregulated in multiple tissues in Type 1 myotonic dystrophy (DM1), a rare neuromuscular disorder that manifests at any age. AMO-02 (tideglusib) inhibits GSK3β activity in preclinical models of DM1 and promotes cellular maturation as well as normalizing aberrant molecular and behavioral phenotypes. This Phase 2 study assessed the pharmacokinetics, safety and tolerability, and preliminary efficacy, of AMO-02 in adolescents and adults with Congenital and Childhood-onset DM1. Methods: Sixteen subjects (aged 13 to 34) with Congenital and Childhood-onset DM1 received 12 weeks of single-blind fixed-dose oral treatment with either 400 mg (n=8) or 1000 mg (n=8) of AMO-02 (NCT02858908). Blood samples were obtained for pharmacokinetic assessment. Safety assessments, such as laboratory tests and ECGs, as well as efficacy assessments of syndromal, cognitive and muscular functioning, were obtained. Results: AMO-02 plasma concentrations conformed to a two-compartment model with first-order absorption and elimination, and dose-dependent increases in exposure (area-under-the-curve, or AUC) were observed. AMO-02 was generally safe and well-tolerated. No early discontinuations due to adverse events nor dose adjustments of AMO-02 occurred. The majority of subjects manifested clinical improvement in their CNS and neuromuscular symptoms after 12 weeks of treatment compared to the placebo baseline, with a larger response noted at the 1000 mg/day dose level. AMO-02 exposure (cumulative AUC) was significantly correlated (p<0.01) with change from baseline on several key efficacy assessments. Conclusion: AMO-02 has favorable pharmacokinetic and clinical risk/benefit profiles meriting further study as a potential treatment for Congenital and Childhood-onset DM1

    Circulating small RNA signatures differentiate accurately the subtypes of muscular dystrophies: small-RNA next-generation sequencing analytics and functional insights

    Get PDF
    Muscular dystrophies are a group of rare and severe inherited disorders mainly affecting the muscle tissue. Duchene Muscular Dystrophy, Myotonic Dystrophy types 1 and 2, Limb Girdle Muscular Dystrophy and Facioscapulohumeral Muscular Dystrophy are some of the members of this family of disorders. In addition to the current diagnostic tools, there is an increasing interest for the development of novel non-invasive biomarkers for the diagnosis and monitoring of these diseases. miRNAs are small RNA molecules characterized by high stability in blood thus making them ideal biomarker candidates for various diseases. In this study, we present the first genome-wide next-generation small RNA sequencing in serum samples of five different types of muscular dystrophy patients and healthy individuals. We identified many small RNAs including miRNAs, lncRNAs, tRNAs, snoRNAs and snRNAs, that differentially discriminate the muscular dystrophy patients from the healthy individuals. Further analysis of the identified miRNAs showed that some miRNAs can distinguish the muscular dystrophy patients from controls and other miRNAs are specific to the type of muscular dystrophy. Bioinformatics analysis of the target genes for the most significant miRNAs and the biological role of these genes revealed different pathways that the dysregulated miRNAs are involved in each type of muscular dystrophy investigated. In conclusion, this study shows unique signatures of small RNAs circulating in five types of muscular dystrophy patients and provides a useful resource for future studies for the development of miRNA biomarkers in muscular dystrophies and for their involvement in the pathogenesis of the disorders

    Scapuloperoneal syndrome type Kaeser and a wide phenotypic spectrum of adult-onset, dominant myopathies are associated with the desmin mutation R350P

    Get PDF
    In 1965, an adult-onset, autosomal dominant disorder with a peculiar scapuloperoneal distribution of weakness and atrophy was described in a large, multi-generation kindred and named ‘scapuloperoneal syndrome type Kaeser' (OMIM #181400). By genetic analysis of the original kindred, we discovered a heterozygous missense mutation of the desmin gene (R350P) cosegregating with the disorder. Moreover, we detected DES R350P in four unrelated German families allowing for genotype-phenotype correlations in a total of 15 patients carrying the same mutation. Large clinical variability was recognized, even within the same family, ranging from scapuloperoneal (n = 2, 12%), limb girdle (n = 10, 60%) and distal phenotypes (n = 3, 18%) with variable cardiac (n = 7, 41%) or respiratory involvement (n = 7, 41%). Facial weakness, dysphagia and gynaecomastia were frequent additional symptoms. Overall and within each family, affected men seemingly bear a higher risk of sudden, cardiac death as compared to affected women. Moreover, histological and immunohistochemical examination of muscle biopsy specimens revealed a wide spectrum of findings ranging from near normal or unspecific pathology to typical, myofibrillar changes with accumulation of desmin. This study reveals that the clinical and pathological variability generally observed in desminopathies may not be attributed to the nature of the DES mutation alone, but may be influenced by additional genetic and epigenetic factors such as gender. In addition, mutations of the desmin gene should be considered early in the diagnostic work-up of any adult-onset, dominant myopathy, even if specific myofibrillar pathology is absen

    Am J Hum Genet

    No full text
    Escobar syndrome is a form of arthrogryposis multiplex congenita and features joint contractures, pterygia, and respiratory distress. Similar findings occur in newborns exposed to nicotinergic acetylcholine receptor (AChR) antibodies from myasthenic mothers. We performed linkage studies in families with Escobar syndrome and identified eight mutations within the γ-subunit gene (CHRNG) of the AChR. Our functional studies show that γ-subunit mutations prevent the correct localization of the fetal AChR in human embryonic kidney–cell membranes and that the expression pattern in prenatal mice corresponds to the human clinical phenotype. AChRs have five subunits. Two α, one β, and one δ subunit are always present. By switching γ to &epsiv; subunits in late fetal development, fetal AChRs are gradually replaced by adult AChRs. Fetal and adult AChRs are essential for neuromuscular signal transduction. In addition, the fetal AChRs seem to be the guide for the primary encounter of axon and muscle. Because of this important function in organogenesis, human mutations in the γ subunit were thought to be lethal, as they are in γ-knockout mice. In contrast, many mutations in other subunits have been found to be viable but cause postnatally persisting or beginning myasthenic syndromes. We conclude that Escobar syndrome is an inherited fetal myasthenic disease that also affects neuromuscular organogenesis. Because γ expression is restricted to early development, patients have no myasthenic symptoms later in life. This is the major difference from mutations in the other AChR subunits and the striking parallel to the symptoms found in neonates with arthrogryposis when maternal AChR auto-antibodies crossed the placenta and caused the transient inactivation of the AChR pathway

    Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort

    Get PDF
    To evaluate the role of genetic variation at the locus on symptomatic diversity in 250 adult, ambulant patients with myotonic dystrophy type 1 (DM1) recruited to the Observational Prolonged Trial in Myotonic Dystrophy Type 1 to Improve Quality of Life-Standards, a Target Identification Collaboration (OPTIMISTIC) clinical trial.We used small pool PCR to correct age at sampling biases and estimate the progenitor allele CTG repeat length and somatic mutational dynamics, and AciI digests and repeat primed PCR to test for the presence of variant repeats.We confirmed disease severity is driven by progenitor allele length, is further modified by age, and, in some cases, sex, and that patients in whom the CTG repeat expands more rapidly in the soma develop symptoms earlier than predicted. We revealed a key role for variant repeats in reducing disease severity and quantified their role in delaying age at onset by approximately 13.2 years (95% confidence interval 5.7-20.7, 2-tailed test = -3.7, = 0.0019).Careful characterization of the CTG repeat to define progenitor allele length and presence of variant repeats has increased utility in understanding clinical variability in a trial cohort and provides a genetic route for defining disease-specific outcome measures, and the basis of treatment response and stratification in DM1 trials

    Associations Between Variant Repeat Interruptions and Clinical Outcomes in Myotonic Dystrophy Type 1

    Get PDF
    Objective: To assess the association between variant repeat (VR) interruptions in patients with myotonic dystrophy type 1 (DM1) and clinical symptoms and outcome measures after cognitive behavioral therapy (CBT) intervention. Methods: Adult patients with DM1 were recruited within the OPTIMISTIC trial (NCT02118779). Disease-related history, current clinical symptoms and comorbidities, functional assessments, and disease- and health-related questionnaires were obtained at baseline and after 5 and 10 months. After genetic analysis, we assessed the association between the presence of VR interruptions and clinical symptoms' long-term outcomes and compared the effects of CBT in patients with and without VR interruptions. Core trial outcome measures analyzed were: 6-minute walking test, DM1-Activ-C, Checklist Individual Strength Fatigue Score, Myotonic Dystrophy Health Index, McGill-Pain questionnaire, and Beck Depression inventory—fast screen. Blood samples for DNA testing were obtained at the baseline visit for determining CTG length and detection of VR interruptions. Results: VR interruptions were detectable in 21/250 patients (8.4%)—12 were assigned to the standard-of-care group (control group) and 9 to the CBT group. Patients with VR interruptions were significantly older when the first medical problem occurred and had a significantly shorter disease duration at baseline. We found a tendency toward a milder disease severity in patients with VR interruptions, especially in ventilation status, mobility, and cardiac symptoms. Changes in clinical outcome measures after CBT were not associated with the presence of VR interruptions. Conclusions: The presence of VR interruptions is associated with a later onset of the disease and a milder phenotype. However, based on the OPTIMISTIC trial data, the presence of VR interruptions was not associated with significant changes on outcome measures after CBT intervention. Trial Registration: Information ClinicalTrials.gov NCT02118779

    Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies

    Get PDF
    Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin–actin association or tropomyosin head-to-tail binding
    corecore