125 research outputs found

    On the interpretation of echelle diagrams for solar-like oscillations. Effect of centrifugal distortion

    Full text link
    This work aims at determining the impact of slow to moderate rotation on the regular patterns often present in solar-like oscillation spectra. We focus on the well-known asteroseismic diagnostic echelle diagrams, examining how rotation may modify the estimates of the large and small spacings, as well as the identification of modes. We illustrate the work with a real case: the solar-like star η\eta Bootis. The modeling takes into account rotation effects on the equilibrium models through an effective gravity and on the oscillation frequencies through both perturbative and non-perturbative calculations. We compare the results of both type of calculations in the context of the regular spacings (like the small spacings and the scaled small spacings) and echelle diagrams. We show that for echelle diagrams the perturbative approach remains valid for rotational velocities up to 40-50 km/s. We show that for the rotational velocities measured in solar-like stars, theoretical oscillation frequencies must be corrected up to the second-order in terms of rotation rate, including near degeneracy effects. For rotational velocities of about 16 km/S and higher, diagnostics on large spacings and on modal identification through echelle diagrams can be significantly altered by the presence of the m0m\neq0 components of the rotationally split modes. We found these effects to be detectable in the observed frequency range. Analysis of the effects of rotation on small spacings and scaled small spacings reveals that these can be of the order of, or even larger than surface effects, typically turbulence, microscopic diffusion, etc. Furthermore, we show that scaled spacings are significantly affected by stellar distortion even for small stellar rotational velocities (from 10-15 km/s) and therefore some care must be taken when using them as indicators for probing deep stellar interiors.Comment: 10 pages,5 figures, accepted for publication in ApJ; http://iopscience.iop.org/0004-637X/721/1/537

    Low energy LIDARs for biomass applications

    Get PDF
    SilviLaser 2015, La Grande Motte, FRA, 28-/09/2015 - 30/09/2015International audienceA new approach for LIDAR altimetry mission for biomass applications ( tree height measurement ) is explored based on low emitted laser energy at high repetition fr equency. Low energy approach drastical ly reduces the laser induced risks. Altimetry performances meet preliminary science requirements . The proposed instrument design is compatible with a space mission

    Rotational Splittings with CoRoT, Expected Number of Detections and Measurement Accuracy

    Full text link
    One of the main goal of the CoRoT experiment is to determine the internal rotation of stars. A seismic measure of rotation requires the detection and an accurate measurement of rotational splittings. Our ability to achieve this goal with CoRoT observations depends on the properties of the target star (in short: spectral type and distance) and will be discussed

    Regional scale rain-forest height mapping using regression-kriging of spaceborneand airborne lidar data: application on French Guiana

    Get PDF
    IGARSS 2015, Milan, ITA, 26-/07/2015 - 31/07/2015International audienceLiDAR remote sensing has been shown to be a good technique for the estimation of forest parameters such as canopy heights and aboveground biomass. Whilst airborne LiDAR data are in general very dense but only available over small areas due to the cost of their acquisition, spaceborne LiDAR data acquired from the Geoscience Laser Altimeter System (GLAS) have a coarser acquisition density associated with a global cover. It is therefore valuable to analyze the integration relevance of canopy heights estimated from LiDAR sensors with ancillary data such as geological, meteorological, and phenological variables in order to propose a forest canopy height map with good precision and high spatial resolution.In this study, canopy heights extracted from both airborne and spaceborne LiDAR, were first extrapolated from available environmental data. The estimated canopy height maps using random forest (RF) regression from the airborne or GLAS calibration datasets showed similar precisions (RMSE better than 6.5 m). In order to improve the precision of the canopy height estimates regression-kriging (kriging of RF regression residuals) was used. Results indicated an improvement in the RMSE (decrease from 6.5 to 4.2 m) for the regression-kriging maps from the GLAS dataset, and from 5.8 to 1.8 m for the regression-kriging map from the airborne LiDAR dataset

    New multisite observations of Delta Scuti stars V624 Tauri and HD 23194

    Full text link
    The preliminary results of STEPHI 2006 campaign are reported.Comment: To be published in Communications in Asteroseismolgy: Special Issu

    Why Bothering to Measure Stellar Rotation with CoRoT?

    Full text link
    One important goal of the CoRoT experiment is to obtain information about the internal rotation of stars, in particular the ratio of central to surface rotation rates. This will provide constraints on the modelling of transport mechanisms of angular momentum acting in radiative (rotationally induced turbulent) and convective zones (plumes, extension beyond convectively instable regions). Relations between the surface rotation period and age, magnetic activity, mass loss and other stellar characteristics can also be studied with a statistically significant set of data as will be provided by Corot. We present various theoretical efforts performed over the past years in order to develope the theoretical tools which will enable us to study rotation with Corot

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Theoretical amplitudes and lifetimes of non-radial solar-like oscillations in red giants

    Full text link
    Solar-like oscillations have been observed in numerous red giants from ground and from space. An important question arises: could we expect to detect non-radial modes probing the internal structure of these stars? We investigate under what physical circumstances non-radial modes could be observable in red giants; what would be their amplitudes, lifetimes and heights in the power spectrum (PS)? Using a non-radial non-adiabatic pulsation code including a non-local time-dependent treatment of convection, we compute the theoretical lifetimes of radial and non-radial modes in several red giant models. Next, using a stochastic excitation model, we compute the amplitudes of these modes and their heights in the PS. Very distinct results are found depending on the evolutionary status of the star.Comment: Source tex file : 1713.tex Bibliography file : 1713.bbl 24 figures : 1713f1.eps, ..., 1713f24.ep
    corecore