4 research outputs found

    Estructura sanitaria de atención al tabaquismo

    Get PDF
    El presente artículo trata de analizar la necesidad de generar una estructura sanitaria de atención al tabaquismo en los distintos departamentos de salud, dependientes de la red pública sanitaria. Esta estructura cobra fuerza y llega a un mayor número de sujetos si se asienta sobre la Atención Primaria de salud, articulándose alrededor de las consultas específicas de tabaquismo en los distintos centros de Salud. Estas consultas deben contar como mínimo con un médico y una enfermera que se dediquen especialmente a atender la consulta al menos 4 horas a la semana. Aun siendo la Atención Primaria la principal puerta de entrada de los pacientes, no podemos descartar el papel de otras unidades o servicios como, medicina Preventiva, los servicios de Neumología o las Unidades de Conductas Adictivas, que también deben hacer un papel importante a la hora de su interrelación. Con todo esto hay que establecer una correcta coordinación entre los distintos servicios, consultas y unidades, sumando a ellas los recursos de Salud Pública e incluso el apoyo que se pueda ofrecer desde distintos ayuntamientos y otras administraciones no sanitarias. Al contar con una estructura definida y una organización coordinada se puede llegar al máximo número de pacientes, además de realizar otras tareas como la prevención o incluso la investigación en este campo, por parte de personas que conozcan toda la problemática de los fumadores. A pesar de los documentos previos, llega la hora de que los distintos gobiernos tanto a nivel autonómico como estatal, consensúen y establezcan un modelo de Atención sanitaria al tabaquismo para todo el Estado español. En este trabajo, aparte de presentar nuestro proyecto, ofrecemos los resultados preliminares que nos indica que nuestra experiencia es efectiva y eficiente en nuestro Departamento de Salud cuando se compara con otros trabajos. Esperamos que con el seguimiento aportemos datos más concluyentes

    chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome

    Get PDF
    Development of tools to jointly visualize the genome and the epigenome remains a challenge. chroGPS is a computational approach that addresses this question. chroGPS uses multidimensional scaling techniques to represent similarity between epigenetic factors, or between genetic elements on the basis of their epigenetic state, in 2D/3D reference maps. We emphasize biological interpretability, statistical robustness, integration of genetic and epigenetic data from heterogeneous sources, and computational feasibility. Although chroGPS is a general methodology to create reference maps and study the epigenetic state of any class of genetic element or genomic region, we focus on two specific kinds of maps: chroGPSfactors, which visualizes functional similarities between epigenetic factors, and chroGPSgenes, which describes the epigenetic state of genes and integrates gene expression and other functional data. We use data from the modENCODE project on the genomic distribution of a large collection of epigenetic factors in Drosophila, a model system extensively used to study genome organization and function. Our results show that the maps allow straightforward visualization of relationships between factors and elements, capturing relevant information about their functional properties that helps to interpret epigenetic information in a functional context and derive testable hypotheses

    dKDM5/LID regulates H3K4me3 dynamics at the transcription-start site (TSS) of actively transcribed developmental genes

    No full text
    H3K4me3 is a histone modification that accumulates at the transcription-start site (TSS) of active genes and is known to be important for transcription activation. The way in which H3K4me3 is regulated at TSS and the actual molecular basis of its contribution to transcription remain largely unanswered. To address these questions, we have analyzed the contribution of dKDM5/LID, the main H3K4me3 demethylase in Drosophila, to the regulation of the pattern of H3K4me3. ChIP-seq results show that, at developmental genes, dKDM5/LID localizes at TSS and regulates H3K4me3. dKDM5/LID target genes are highly transcribed and enriched in active RNApol II and H3K36me3, suggesting a positive contribution to transcription. Expression-profiling show that, though weakly, dKDM5/LID target genes are significantly downregulated upon dKDM5/LID depletion. Furthermore, dKDM5/LID depletion results in decreased RNApol II occupancy, particularly by the promoter-proximal Pol lloser5 form. Our results also show that ASH2, an evolutionarily conserved factor that locates at TSS and is required for H3K4me3, binds and positively regulates dKDM5/LID target genes. However, dKDM5/LID and ASH2 do not bind simultaneously and recognize different chromatin states, enriched in H3K4me3 and not, respectively. These results indicate that, at developmental genes, dKDM5/LID and ASH2 coordinately regulate H3K4me3 at TSS and that this dynamic regulation contributes to transcription

    dKDM5/LID regulates H3K4me3 dynamics at the transcription-start site (TSS) of actively transcribed developmental genes

    Get PDF
    H3K4me3 is a histone modification that accumulates at the transcription-start site (TSS) of active genes and is known to be important for transcription activation. The way in which H3K4me3 is regulated at TSS and the actual molecular basis of its contribution to transcription remain largely unanswered. To address these questions, we have analyzed the contribution of dKDM5/LID, the main H3K4me3 demethylase in Drosophila, to the regulation of the pattern of H3K4me3. ChIP-seq results show that, at developmental genes, dKDM5/LID localizes at TSS and regulates H3K4me3. dKDM5/LID target genes are highly transcribed and enriched in active RNApol II and H3K36me3, suggesting a positive contribution to transcription. Expression-profiling show that, though weakly, dKDM5/LID target genes are significantly downregulated upon dKDM5/LID depletion. Furthermore, dKDM5/LID depletion results in decreased RNApol II occupancy, particularly by the promoter-proximal Pol lloser5 form. Our results also show that ASH2, an evolutionarily conserved factor that locates at TSS and is required for H3K4me3, binds and positively regulates dKDM5/LID target genes. However, dKDM5/LID and ASH2 do not bind simultaneously and recognize different chromatin states, enriched in H3K4me3 and not, respectively. These results indicate that, at developmental genes, dKDM5/LID and ASH2 coordinately regulate H3K4me3 at TSS and that this dynamic regulation contributes to transcription
    corecore