4,867 research outputs found

    La ciència de la pintura, la pintura de la ciència

    Get PDF
    La ciència de la pintura, la pintura de la ciènci

    Enfermedad intestinal inflamatoria en perros : 58 casos (2000-2003)

    Get PDF
    El objetivo de este estudio retrospectivo es evaluar la historia clínica, los hallazgos histopatológicos y la respuesta al tratamiento descritos en 58 perros durante el periodo 2000-2003

    Critical boron-doping levels for generation of dislocations in synthetic diamond

    Get PDF
    Defects induced by boron doping in diamond layers were studied by transmission electron microscopy. The existence of a critical boron doping level above which defects are generated is reported. This level is found to be dependent on the CH4 /H2 molar ratios and on growth directions. The critical boron concentration lied in the 6.5–17.0 X 10 20 at/cm3 range in the direction and at 3.2 X 1021 at/cm 3 for the one. Strain related effects induced by the doping are shown not to be responsible. From the location of dislocations and their Burger vectors, a model is proposed, together with their generation mechanism.6 page

    Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies)

    Get PDF
    International audienceOrganic matter is an important factor that cannot be neglected when considering global carbon cycle. New data including organic matter geochemistry at the small watershed scale are needed to elaborate more constrained carbon cycle and climatic models. The objectives are to estimate the DOC and DIC fluxes exported from small tropical watersheds and to give strong constraints on the carbon hydrodynamic of these systems. To answer these questions, we have studied the geochemistry of eleven small watersheds around Basse-Terre volcanic Island in the French West Indies during different hydrological regimes from 2006 to 2008 (i.e. low water level versus floods). We propose a complete set of carbon measurements, including DOC and DIC concentrations, δ13C data, and less commonly, some spectroscopic indicators of the nature of the organic matter. The DOC/DIC ratio varies between 0.07 and 0.30 in low water level and between 0.25 and 1.97 during floods, indicating that organic matter is mainly exported during flood events. On the light of the isotopic composition of DOC, ranging from -32.8 to -26.2 ‰ during low water level and from -30.1 to -27.2 ‰ during floods, we demonstrate that export of organic carbon is mainly controlled by perennial saprolite groundwaters, except for flood events during which rivers are also strongly influenced by soil erosion. The mean annual yields ranged from 2.5 to 5.7 t km-2 yr-1 for the DOC and from 4.8 to 19.6 t km-2 yr-1 for the DIC and exhibit a non-linear relationship with slopes of watersheds. The flash floods explain around 60% of the annual DOC flux and between 25 and 45% of the DIC flux, highlighting the important role of these extreme meteorological events on global carbon export in small tropical volcanic islands. From a carbon mass balance point of view the exports of dissolved carbon from small volcanic islands are important and should be included in global organic carbon budgets

    TEM study of defects versus growth orientations in heavily boron-doped diamond

    No full text
    International audienceHeavy boron-doping layer in diamond can be responsible for the generation of extended defects during the growth processes (Blank et al., Diam. Relat. Mater. 17, 1840 (2008) [1]). As claimed recently (Alegre et al., Appl. Phys. Lett. 105, 173103 (2014) [2]), boron pair interactions rather than strain-related misfit seems to be responsible for such dislocation generation. In the present work, electron microscopy observations are used to study the defects induced by heavy boron doping in different growth plane orientations. Facets of pyramidal Hillocks (PHs) and pits provide access to non-conventional growth orientations where boron atoms incorporation is different during growth. TEM analysis on FIB prepared lamellas confirm that also for those growth orientations, the generation of dislocations occurs within the heavily boron-doped diamond layers. Stacking faults (SFs) have been also observed by high resolution transmission electron microscopy (HREM). From the invisibility criteria, using weak beam (WB) observation, ½ [1-10] and 1/6 [11-2], Burger vectors have been identified. Their generation behavior confirms the mechanism reported by Alegre et al. where local in-plane strain effects induced at the growing surface of the diamond lattice by the neighboring of several boron atoms cause the generation of such extended defects

    Controlling suction by vapour equilibrium technique at different temperatures, application to the determination of the water retention properties of MX80 clay

    Full text link
    Problems related to unsaturated soils are frequently encountered in geotechnical or environmental engineering works. In most cases, for the purpose of simplicity, the problems are studied by considering the suction effects on volume change or shear strength under isothermal conditions. Under isothermal condition, very often, a temperature independent water retention curve is considered in the analysis, which is obviously a simplification. When the temperature changes are too significant to be neglected, it is necessary to account for the thermal effects. In this paper, a method for controlling suction using the vapour equilibrium technique at different temperatures is presented. First, calibration of various saturated saline solutions was carried out from temperature of 20 degrees C to 60 degrees C. A mirror psychrometer was used for the measurement of relative humidity generated by saturated saline solutions at different temperatures. The results obtained are in good agreement with the data from the literature. This information was then used to determine the water retention properties of MX80 clay, which showed that the retention curve is shifting down with increasing of temperature

    Stratigraphy of a diamond epitaxial three-dimensional overgrowth using doping superlattices

    No full text
    International audienceThe selective doped overgrowth of 3D mesa patterns and trenches has become an essential fabrication step of advanced monolithic diamond-based power devices. A novel methodology is proposed here, combining the overgrowth of plasma-etched cylindrical mesa structures with the sequential growth of doping superlattices. The latter involve thin heavily boron doped epilayers separating thicker undoped epilayers in a periodic fashion. Beside the classical shape analysis under the scanning electron microscope relying on the appearance of facets corresponding to the main crystallographic directions and their evolution toward slow growing facets, the doping superlattices were used as markers in oriented cross-sectional lamellas prepared by Focused Ion Beam and observed by Transmission Electron Microscopy. This stratigraphic approach is shown here to be applicable to overgrown structures where faceting was not detectable. Intermediate growth directions were detected at different times of the growth process and the periodicity of the superlattice allowed to calculate the growth rates and parameters, providing an original insight into the planarization mechanism. Different configurations of the growth front were obtained for different sample orientations, illustrating the anisotropy of the 3D growth. Dislocations were also observed along the lateral growth fronts with two types of Burger vector: bsub01-1 = 1/2 [01-1] and bsub112 = 1/6 [112]. Moreover, the clustering of these extended defects in specific regions of the overgrowth prompted a proposal of two different dislocation generation mechanisms

    Spin glass behavior in URh_2Ge_2

    Get PDF
    URh_2Ge_2 occupies an extraordinary position among the heavy-electron 122-compounds, by exhibiting a previously unidentified form of magnetic correlations at low temperatures, instead of the usual antiferromagnetism. Here we present new results of ac and dc susceptibilities, specific heat and neutron diffraction on single-crystalline as-grown URh_2Ge_2. These data clearly indicate that crystallographic disorder on a local scale produces spin glass behavior in the sample. We therefore conclude that URh_2Ge_2 is a 3D Ising-like, random-bond, heavy-fermion spin glass.Comment: 10 pages, RevTeX, with 4 postscript figures, accepted by Physical Review Letters Nov 15, 199
    corecore