220 research outputs found

    La polifonía litúrgica en la obra de Higini Anglès

    Get PDF
    El profesor Josep M. Llorens presenta la aportación musicológica de Higini Anglés como la piedra fundamental que corona la naciente musicología hispánica después de las aportaciones de Saldoni, Eslava, Soriano, Riaño, Barbieri, Mitjana y el maestro Felip Pedrell

    Location-Specific Spectral and Thermal Effects in Tracking and Fixed Tilt Photovoltaic Systems

    Get PDF
    The efficiency of photovoltaic modules in the field is generally lower than the efficiency under standard testing conditions due to temperature and spectral effects. Using the latest spectral dataset available from the National Solar Radiation Database, we report spectral correction factors ranging from -2% to 1.3% of the produced energy for silicon modules depending on location and collector geometry. We find that spectral effects favor trackers if silicon modules are used, but favor a fixed tilt instead if perovskites or CdTe are used. In high-irradiance locations, the energy yield advantage of silicon-based trackers is underestimated by 0.4% if spectral sensitivity effects are neglected. As the photovoltaic market grows to a multi-terawatt size, these seemingly small effects are expected to have an economic impact equivalent to tens of billions of dollars in the next few decades, far outweighting the cost of the required research effort.We gratefully acknowledge the scientific and technical input from Dr. J. Buencuerpo. This work would have not been possible without the data and computing resources made publicly available by NREL as part of the NSRDB. Funding was provided by the Spanish Government and the European Union through MCIU-AEI-FEDER-UE (ENE2017-91092-EXP, RTI2018-096937-B-C22, RYC-2017-21995) and Comunidad de Madrid (P2018/EMT-4308). D.C. thanks ”Institució Catalana de Recerca i Estudis Avançats (ICREA)" for the ICREA Acadèmia award. I.G. is funded by Ministerio de Economía y Competitividad through the Ramón y Cajal program (RYC-2014-15621)

    Crónica

    Get PDF

    Analysis of the modified optical properties and band structure of GaAs12xSbx-capped InAs/GaAs quantum dots

    Get PDF
    The origin of the modified optical properties of InAs/GaAs quantum dots (QD) capped with a thin GaAs1−xSbx layer is analyzed in terms of the band structure. To do so, the size, shape, and composition of the QDs and capping layer are determined through cross-sectional scanning tunnelling microscopy and used as input parameters in an 8 × 8 k·p model. As the Sb content is increased, there are two competing effects determining carrier confinement and the oscillator strength: the increased QD height and reduced strain on one side and the reduced QD-capping layer valence band offset on the other. Nevertheless, the observed evolution of the photoluminescence (PL) intensity with Sb cannot be explained in terms of the oscillator strength between ground states, which decreases dramatically for Sb > 16%, where the band alignment becomes type II with the hole wavefunction localized outside the QD in the capping layer. Contrary to this behaviour, the PL intensity in the type II QDs is similar (at 15 K) or even larger (at room temperature) than in the type I Sb-free reference QDs. This indicates that the PL efficiency is dominated by carrier dynamics, which is altered by the presence of the GaAsSb capping layer. In particular, the presence of Sb leads to an enhanced PL thermal stability. From the comparison between the activation energies for thermal quenching of the PL and the modelled band structure, the main carrier escape mechanisms are suggested. In standard GaAs-capped QDs, escape of both electrons and holes to the GaAs barrier is the main PL quenching mechanism. For small-moderate Sb (<16%) for which the type I band alignment is kept, electrons escape to the GaAs barrier and holes escape to the GaAsSb capping layer, where redistribution and retraping processes can take place. For Sb contents above 16% (type-II region), holes remain in the GaAsSb layer and the escape of electrons from the QD to the GaAs barrier is most likely the dominant PL quenching mechanism. This means that electrons and holes behave dynamically as uncorrelated pairs in both the type-I and type-II structures

    Laponite as carrier for controlled in vitro delivery of dexamethasone in vitreous humor models

    Get PDF
    Laponite clay is able to retain dexamethasone by simple physisorption, presumably accomplished by hydrogen bonding formation and/or complexation with sodium counterions, as shown by solid state NMR. The physisorption can be somehow modulated by changing the solvent in the adsorption process. This simple system is able to deliver dexamethasone in a controlled manner to solutions used as models for vitreous humor. The proven biocompatibility of laponite as well as its transparency in the gel state, together with the simplicity of the preparation method, makes this system suitable for future in vivo tests of ophthalmic treatment.This study was supported by the Instituto de Salud Carlos III (project PI12/02285) and authors would like to acknowledge the financial support received from Diputación General de Aragón (E11 Group co-financed by the European Regional Development Funds).Peer Reviewe

    Simulating the Influence of Conjugative-Plasmid Kinetic Values on the Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model

    Full text link
    [EN] Bacterial plasmids harboring antibiotic resistance genes are critical in the spread of antibiotic resistance. It is known that plasmids differ in their kinetic values, i.e., conjugation rate, segregation rate by copy number incompatibility with related plasmids, and rate of stochastic loss during replication. They also differ in cost to the cell in terms of reducing fitness and in the frequency of compensatory mutations compensating plasmid cost. However, we do not know how variation in these values influences the success of a plasmid and its resistance genes in complex ecosystems, such as the microbiota. Genes are in plasmids, plasmids are in cells, and cells are in bacterial populations and microbiotas, which are inside hosts, and hosts are in human communities at the hospital or the community under various levels of cross-colonization and antibiotic exposure. Differences in plasmid kinetics might have consequences on the global spread of antibiotic resistance. New membrane computing methods help to predict these consequences. In our simulation, conjugation frequency of at least 10(-3) influences the dominance of a strain with a resistance plasmid. Coexistence of different antibiotic resistances occurs if host strains can maintain two copies of similar plasmids. Plasmid loss rates of 10(-4) or 10(-5) or plasmid fitness costs of >= 0.06 favor plasmids located in the most abundant species. The beneficial effect of compensatory mutations for plasmid fitness cost is proportional to this cost at high mutation frequencies (10(-3) to 10(-5)). The results of this computational model clearly show how changes in plasmid kinetics can modify the entire population ecology of antibiotic resistance in the hospital setting.F. Baquero, M. Campos, and T. M. Coque were supported by EU Joint Programming Initiative JPIAMR2016-AC16/00043 (JPIonAMR-Third call on Transmission, ST131TS project), the Health Institute Carlos III of Spain (grants PI15-00818 and PI18-01942 and CIBER [CIBER in Epidemiology and Public Health, CIBERESP; CB06/02/0053]), and the Regional Government of Madrid (InGEMICS-C; S2017/BMD-3691), all of them cofinanced by the European Development Regional Fund (ERDF) "A Way to Achieve Europe." A. San Millan was supported by the European Research Council under the European Union's Horizon 2020 Research and Innovation Program (ERC grant agreement number 757440-PLASREVOLUTION)Campos Frances, M.; San Millan, A.; Sempere Luna, JM.; Lanza, VF.; Coque, TM.; Llorens, C.; Baquero, F. (2020). Simulating the Influence of Conjugative-Plasmid Kinetic Values on the Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. Antimicrobial Agents and Chemotherapy. 64(8):1-19. https://doi.org/10.1128/AAC.00593-20S119648De Gelder, L., Ponciano, J. M., Joyce, P., & Top, E. M. (2007). Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. Microbiology, 153(2), 452-463. doi:10.1099/mic.0.2006/001784-0Norman, A., Hansen, L. H., & Sørensen, S. J. (2009). Conjugative plasmids: vessels of the communal gene pool. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1527), 2275-2289. doi:10.1098/rstb.2009.0037Andam, C. P., Fournier, G. P., & Gogarten, J. P. (2011). Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiology Reviews, 35(5), 756-767. doi:10.1111/j.1574-6976.2011.00274.xBaquero, F., Tedim, A. P., & Coque, T. M. (2013). Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00015Wein, T., Hülter, N. F., Mizrahi, I., & Dagan, T. (2019). Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nature Communications, 10(1). doi:10.1038/s41467-019-10600-7Yano, H., Shintani, M., Tomita, M., Suzuki, H., & Oshima, T. (2019). Reconsidering plasmid maintenance factors for computational plasmid design. Computational and Structural Biotechnology Journal, 17, 70-81. doi:10.1016/j.csbj.2018.12.001Gumpert, H., Kubicek-Sutherland, J. Z., Porse, A., Karami, N., Munck, C., Linkevicius, M., … Sommer, M. O. A. (2017). Transfer and Persistence of a Multi-Drug Resistance Plasmid in situ of the Infant Gut Microbiota in the Absence of Antibiotic Treatment. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.01852Durão, P., Balbontín, R., & Gordo, I. (2018). Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends in Microbiology, 26(8), 677-691. doi:10.1016/j.tim.2018.01.005Campos, M., Llorens, C., Sempere, J. M., Futami, R., Rodriguez, I., Carrasco, P., … Baquero, F. (2015). A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biology Direct, 10(1). doi:10.1186/s13062-015-0070-9Campos, M., Capilla, R., Naya, F., Futami, R., Coque, T., Moya, A., … Baquero, F. (2019). Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. mBio, 10(1), e02460-18. doi:10.1128/mbio.02460-1813. Baquero F, Campos M, Llorens C, Sempere JM. 2018. A model of antibiotic resistance evolution dynamics through P systems with active membranes and communication rules, p 33–44. In Graciani C, Agustín Riscos-Núñez A, Păun Gh, Rozenberg G, Salomaa A (ed), Enjoying natural computing. Springer, Cham, Switzerland.Leclerc, Q. J., Lindsay, J. A., & Knight, G. M. (2019). Mathematical modelling to study the horizontal transfer of antimicrobial resistance genes in bacteria: current state of the field and recommendations. Journal of The Royal Society Interface, 16(157), 20190260. doi:10.1098/rsif.2019.0260Blanquart, F. (2019). Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evolutionary Applications, 12(3), 365-383. doi:10.1111/eva.1275316. Rozenberg G, Salomaa A, Păun G (ed). 2010. The Oxford handbook of membrane computing. Oxford University Press, Oxford, England.17. Păun G. 2002. Membrane computing. An introduction. Springer-Verlag, Heidelberg, Germany.Novais, A., Cantón, R., Moreira, R., Peixe, L., Baquero, F., & Coque, T. M. (2006). Emergence and Dissemination of Enterobacteriaceae Isolates Producing CTX-M-1-Like Enzymes in Spain Are Associated with IncFII (CTX-M-15) and Broad-Host-Range (CTX-M-1, -3, and -32) Plasmids. Antimicrobial Agents and Chemotherapy, 51(2), 796-799. doi:10.1128/aac.01070-06Mathers, A. J., Peirano, G., & Pitout, J. D. D. (2015). The Role of Epidemic Resistance Plasmids and International High-Risk Clones in the Spread of Multidrug-Resistant Enterobacteriaceae. Clinical Microbiology Reviews, 28(3), 565-591. doi:10.1128/cmr.00116-1420. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. 2018. Antimicrobial resistance in Escherichia coli, p 289–316. In Schwarz S, Cavaco LM, Shen J (ed), Antimicrobial resistance in bacteria from livestock and companion animals. ASM Press, Washington, DC.Livermore, D. M., & Hawkey, P. M. (2005). CTX-M: changing the face of ESBLs in the UK. Journal of Antimicrobial Chemotherapy, 56(3), 451-454. doi:10.1093/jac/dki23923. European Centre for Disease Prevention and Control. 2015. Antimicrobial resistance surveillance in Europe 2015. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). European Centre for Disease Prevention and Control, Stockholm, Sweden.Bush, K., & Fisher, J. F. (2011). Epidemiological Expansion, Structural Studies, and Clinical Challenges of New β-Lactamases from Gram-Negative Bacteria. Annual Review of Microbiology, 65(1), 455-478. doi:10.1146/annurev-micro-090110-102911Bush, K. (2018). Past and Present Perspectives on β-Lactamases. Antimicrobial Agents and Chemotherapy, 62(10). doi:10.1128/aac.01076-18Hawser, S. P., Bouchillon, S. K., Hoban, D. J., Badal, R. E., Cantón, R., & Baquero, F. (2010). Incidence and Antimicrobial Susceptibility of Escherichia coli and Klebsiella pneumoniae with Extended-Spectrum β-Lactamases in Community- and Hospital-Associated Intra-Abdominal Infections in Europe: Results of the 2008 Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrobial Agents and Chemotherapy, 54(7), 3043-3046. doi:10.1128/aac.00265-10Simonsen, L., Gordon, D. M., Stewart, F. M., & Levin, B. R. (1990). Estimating the rate of plasmid transfer: an end-point method. Journal of General Microbiology, 136(11), 2319-2325. doi:10.1099/00221287-136-11-2319Levin, B. R., Stewart, F. M., & Rice, V. A. (1979). The kinetics of conjugative plasmid transmission: Fit of a simple mass action model. Plasmid, 2(2), 247-260. doi:10.1016/0147-619x(79)90043-xTurner, P. E., Williams, E. S. C. P., Okeke, C., Cooper, V. S., Duffy, S., & Wertz, J. E. (2014). Antibiotic resistance correlates with transmission in plasmid evolution. Evolution, 68(12), 3368-3380. doi:10.1111/evo.12537Porse, A., Schønning, K., Munck, C., & Sommer, M. O. A. (2016). Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts. Molecular Biology and Evolution, 33(11), 2860-2873. doi:10.1093/molbev/msw163Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C., & de la Cruz, F. (2010). Mobility of Plasmids. Microbiology and Molecular Biology Reviews, 74(3), 434-452. doi:10.1128/mmbr.00020-1038. Taylor DE, Gibreel A, Tracz DM, Lawley TD. 2004. Antibiotic resistance plasmids, p 473–492. In Funnell BE, Phillips GJ (ed), Plasmid biology. American Society of Microbiology, Washington, DC.Million-Weaver, S., & Camps, M. (2014). Mechanisms of plasmid segregation: Have multicopy plasmids been overlooked? Plasmid, 75, 27-36. doi:10.1016/j.plasmid.2014.07.002Lau, B. T. C., Malkus, P., & Paulsson, J. (2013). New quantitative methods for measuring plasmid loss rates reveal unexpected stability. Plasmid, 70(3), 353-361. doi:10.1016/j.plasmid.2013.07.007Vogwill, T., & MacLean, R. C. (2014). The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evolutionary Applications, 8(3), 284-295. doi:10.1111/eva.12202Andersson, D. I., & Levin, B. R. (1999). The biological cost of antibiotic resistance. Current Opinion in Microbiology, 2(5), 489-493. doi:10.1016/s1369-5274(99)00005-3Andersson, D. I., & Hughes, D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Reviews Microbiology, 8(4), 260-271. doi:10.1038/nrmicro2319Loftie-Eaton, W., Bashford, K., Quinn, H., Dong, K., Millstein, J., Hunter, S., … Top, E. M. (2017). Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nature Ecology & Evolution, 1(9), 1354-1363. doi:10.1038/s41559-017-0243-2Zwanzig, M., Harrison, E., Brockhurst, M. A., Hall, J. P. J., Berendonk, T. U., & Berger, U. (2019). Mobile Compensatory Mutations Promote Plasmid Survival. mSystems, 4(1). doi:10.1128/msystems.00186-18Yang, Q. E., MacLean, C., Papkou, A., Pritchard, M., Powell, L., Thomas, D., … Walsh, T. R. (2020). Compensatory mutations modulate the competitiveness and dynamics of plasmid-mediated colistin resistance in Escherichia coli clones. The ISME Journal, 14(3), 861-865. doi:10.1038/s41396-019-0578-6Gama, J. A., Zilhão, R., & Dionisio, F. (2018). Impact of plasmid interactions with the chromosome and other plasmids on the spread of antibiotic resistance. Plasmid, 99, 82-88. doi:10.1016/j.plasmid.2018.09.009Harrison, E., Dytham, C., Hall, J. P. J., Guymer, D., Spiers, A. J., Paterson, S., & Brockhurst, M. A. (2016). Rapid compensatory evolution promotes the survival of conjugative plasmids. Mobile Genetic Elements, 6(3), e1179074. doi:10.1080/2159256x.2016.1179074Hall, J. P. J., Brockhurst, M. A., Dytham, C., & Harrison, E. (2017). The evolution of plasmid stability: Are infectious transmission and compensatory evolution competing evolutionary trajectories? Plasmid, 91, 90-95. doi:10.1016/j.plasmid.2017.04.00354. Shintani M, Suzuki H. 2019. Plasmids and their hosts, p 109–133. In Nishida H, Oshima T (ed), DNA traffic in the environment. Springer, Singapore.Komp Lindgren, P., Karlsson, A., & Hughes, D. (2003). Mutation Rate and Evolution of Fluoroquinolone Resistance in Escherichia coli Isolates from Patients with Urinary Tract Infections. Antimicrobial Agents and Chemotherapy, 47(10), 3222-3232. doi:10.1128/aac.47.10.3222-3232.2003Krone, S. M., Lu, R., Fox, R., Suzuki, H., & Top, E. M. (2007). Modelling the spatial dynamics of plasmid transfer and persistence. Microbiology, 153(8), 2803-2816. doi:10.1099/mic.0.2006/004531-0Baquero, F., Coque, T. M., & de la Cruz, F. (2011). Ecology and Evolution as Targets: the Need for Novel Eco-Evo Drugs and Strategies To Fight Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 55(8), 3649-3660. doi:10.1128/aac.00013-11Buckner, M. M. C., Ciusa, M. L., & Piddock, L. J. V. (2018). Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiology Reviews, 42(6), 781-804. doi:10.1093/femsre/fuy031Bush, K. (2008). Extended-spectrum β-lactamases in North America, 1987–2006. Clinical Microbiology and Infection, 14, 134-143. doi:10.1111/j.1469-0691.2007.01848.xJacoby, G. A., & Han, P. (1996). Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. Journal of clinical microbiology, 34(4), 908-911. doi:10.1128/jcm.34.4.908-911.1996Valverde, A., Coque, T. M., Sanchez-Moreno, M. P., Rollan, A., Baquero, F., & Canton, R. (2004). Dramatic Increase in Prevalence of Fecal Carriage of Extended-Spectrum  -Lactamase-Producing Enterobacteriaceae during Nonoutbreak Situations in Spain. Journal of Clinical Microbiology, 42(10), 4769-4775. doi:10.1128/jcm.42.10.4769-4775.2004Hernández, J. R., Martínez-Martínez, L., Cantón, R., Coque, T. M., & Pascual, A. (2005). Nationwide Study of Escherichia coli and Klebsiella pneumoniae Producing Extended-Spectrum β-Lactamases in Spain. Antimicrobial Agents and Chemotherapy, 49(5), 2122-2125. doi:10.1128/aac.49.5.2122-2125.2005PEREZ, F., ENDIMIANI, A., HUJER, K., & BONOMO, R. (2007). The continuing challenge of ESBLs. Current Opinion in Pharmacology, 7(5), 459-469. doi:10.1016/j.coph.2007.08.003Hernández-García, M., Pérez-Viso, B., Navarro-San Francisco, C., Baquero, F., Morosini, M. I., Ruiz-Garbajosa, P., & Cantón, R. (2019). Intestinal co-colonization with different carbapenemase-producing Enterobacterales isolates is not a rare event in an OXA-48 endemic area. EClinicalMedicine, 15, 72-79. doi:10.1016/j.eclinm.2019.09.005Jensen, R. B., & Gerdes, K. (1995). Programmed cell death in bacteria: proteic plasmid stabilization systems. Molecular Microbiology, 17(2), 205-210. doi:10.1111/j.1365-2958.1995.mmi_17020205.xStalder, T., Cornwell, B., Lacroix, J., Kohler, B., Dixon, S., Yano, H., … Top, E. M. (2020). Evolving Populations in Biofilms Contain More Persistent Plasmids. Molecular Biology and Evolution, 37(6), 1563-1576. doi:10.1093/molbev/msaa024McNally, A., Oren, Y., Kelly, D., Pascoe, B., Dunn, S., Sreecharan, T., … Corander, J. (2016). Combined Analysis of Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations. PLOS Genetics, 12(9), e1006280. doi:10.1371/journal.pgen.1006280Baquero, M.-R., Galán, J. C., del Carmen Turrientes, M., Cantón, R., Coque, T. M., Martínez, J. L., & Baquero, F. (2005). Increased Mutation Frequencies in Escherichia coli Isolates Harboring Extended-Spectrum β-Lactamases. Antimicrobial Agents and Chemotherapy, 49(11), 4754-4756. doi:10.1128/aac.49.11.4754-4756.2005Baquero, F. (2004). From pieces to patterns: evolutionary engineering in bacterial pathogens. Nature Reviews Microbiology, 2(6), 510-518. doi:10.1038/nrmicro909Andersson, D. I., Balaban, N. Q., Baquero, F., Courvalin, P., Glaser, P., Gophna, U., … Tønjum, T. (2020). Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiology Reviews, 44(2), 171-188. doi:10.1093/femsre/fuaa001Jernberg, C., Löfmark, S., Edlund, C., & Jansson, J. K. (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology, 156(11), 3216-3223. doi:10.1099/mic.0.040618-0Sommer, F., Anderson, J. M., Bharti, R., Raes, J., & Rosenstiel, P. (2017). The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology, 15(10), 630-638. doi:10.1038/nrmicro.2017.58Novais, C., Tedim, A. P., Lanza, V. F., Freitas, A. R., Silveira, E., Escada, R., … Coque, T. M. (2016). Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.0158
    corecore