821 research outputs found

    Soft Color Enhancement of the Production of J/psi's by Neutrinos

    Get PDF
    We calculate the production of J/psi mesons by neutrino-nucleon collisions in fixed target experiments. Soft color, often referred to as color evaporation effects, enhance production cross sections due to the contribution of color octet states. Though still small, J/\psi production may be observable in present and future experiments like NuTeV and muon colliders.Comment: 7 pages, Revtex, 4 postscript figures, uses epsfig.st

    Spin-orbit splitting of image states

    Full text link
    We quantify the effect of the spin-orbit interaction on the Rydberg-like series of image state electrons at the (111) and (001) surface of Ir, Pt and Au. Using relativistic multiple-scattering methods we find Rashba-like dispersions with Delta E(K)=gamma K with values of gamma for n=1 states in the range 38-88 meV Angstrom. Extending the phase-accumulation model to include spin-orbit scattering we find that the splittings vary like 1/(n+a)^3 where a is the quantum defect and that they are related to the probability of spin-flip scattering at the surface. The splittings should be observable experimentally being larger in magnitude than some exchange-splittings that have been resolved by inverse photoemission, and are comparable to linewidths from inelastic lifetimes.Comment: 10 pages, 4 figure

    Electroweak radiative corrections to deep-inelastic neutrino scattering - implications for NuTeV ?

    Full text link
    We calculate the O(alpha) electroweak corrections to charged- and neutral-current deep-inelastic neutrino scattering off an isoscalar target. The full one-loop-corrected cross sections, including hard photonic corrections, are evaluated and compared to an earlier result which was used in the NuTeV analysis. In particular, we compare results that differ in input-parameter scheme, treatment of real photon radiation and factorization scheme. The associated shifts in the theoretical prediction for the ratio of neutral- and charged-current cross sections can be larger than the experimental accuracy of the NuTeV result.Comment: 19 pages late

    \u27Vitamin D and cognition in older adults\u27: updated international recommendations.

    Get PDF
    BACKGROUND: Hypovitaminosis D, a condition that is highly prevalent in older adults aged 65 years and above, is associated with brain changes and dementia. Given the rapidly accumulating and complex contribution of the literature in the field of vitamin D and cognition, clear guidance is needed for researchers and clinicians. METHODS: International experts met at an invitational summit on \u27Vitamin D and Cognition in Older Adults\u27. Based on previous reports and expert opinion, the task force focused on key questions relating to the role of vitamin D in Alzheimer\u27s disease and related disorders. Each question was discussed and voted using a Delphi-like approach. RESULTS: The experts reached an agreement that hypovitaminosis D increases the risk of cognitive decline and dementia in older adults and may alter the clinical presentation as a consequence of related comorbidities; however, at present, vitamin D level should not be used as a diagnostic or prognostic biomarker of Alzheimer\u27s disease due to lack of specificity and insufficient evidence. This population should be screened for hypovitaminosis D because of its high prevalence and should receive supplementation, if necessary; but this advice was not specific to cognition. During the debate, the possibility of \u27critical periods\u27 during which vitamin D may have its greatest impact on the brain was addressed; whether hypovitaminosis D influences cognition actively through deleterious effects and/or passively by loss of neuroprotection was also considered. CONCLUSIONS: The international task force agreed on five overarching principles related to vitamin D and cognition in older adults. Several areas of uncertainty remain, and it will be necessary to revise the proposed recommendations as new findings become available

    Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low ν\nu Method

    Get PDF
    We investigate the "low-ν\nu" method (developed by the CCFR/NUTEV collaborations) to determine the neutrino flux in a wide band neutrino beam at very low energies, a region of interest to neutrino oscillations experiments. Events with low hadronic final state energy ν<νcut\nu<\nu_{cut} (of 1, 2 and 5 GeV) were used by the MINOS collaboration to determine the neutrino flux in their measurements of neutrino (νμ\nu_\mu) and antineutrino (\nub_\mu) total cross sections. The lowest νμ\nu_\mu energy for which the method was used in MINOS is 3.5 GeV, and the lowest \nub_\mu energy is 6 GeV. At these energies, the cross sections are dominated by inelastic processes. We investigate the application of the method to determine the neutrino flux for νμ\nu_\mu, \nub_\mu energies as low as 0.7 GeV where the cross sections are dominated by quasielastic scattering and Δ\Delta(1232) resonance production. We find that the method can be extended to low energies by using νcut\nu_{cut} values of 0.25 and 0.50 GeV, which is feasible in fully active neutrino detectors such as MINERvA.Comment: 25 pages, 32 figures, to be published in European Physics Journal

    The atmospheric neutrino anomaly without maximal mixing?

    Get PDF
    We consider a pattern of neutrino masses in which there is an approximate mass degeneracy between the two mass eigenstates most coupled to the νμ\nu_\mu and ντ\nu_\tau flavour eigenstates. Earth-matter effects can lift this degeneracy and induce an effectively maximal mixing between these two generations. This occurs if νe\nu_e's contain comparable admixtures of the degenerate eigenstates, even rather small ones. This provides an explanation of the atmospheric neutrino anomaly in which the {\it ab initio} introduction of a large mixing angle is not required. To test this possibility we perform a novel and detailed analysis of the 52 kiloton-year SuperKamiokande data, and we find that in a large region of parameter space the corresponding confidence levels are excellent. The most recent results from the Chooz reactor experiment, however, severely curtail this region, so that the conventional scenario with nearly maximal mixing angles --which we also analyse in detail-- is supported by the data.Comment: Some relevant references added and a misprint correcte

    Pion Excess, Nuclear Correlations, and the Interpretation of (p,n\vec p, \vec n) Spin Transfer Experiments

    Full text link
    Conventional theories of nuclear interactions predict a net increase in the distribution of virtual pions in nuclei relative to free nucleons. Analysis of data from several nuclear experiments has led to claims of evidence against such a pion excess. These conclusions are usually based on a collective theory (RPA) of the pions, which may be inadequate. The issue is the energy dependence of the nuclear response, which differs for theories with strong NN correlations from the RPA predictions. In the present paper, information about the energy dependence is extracted from sum rules, which are calculated for such a correlated, noncollective nuclear theory. The results lead to much reduced sensitivity of nuclear reactions to the correlations that are responsible for the pion excess. The primary example is (p,n)(\vec p,\vec n) spin transfer, for which the expected effects are found to be smaller than the experimental uncertainties. The analysis has consequences for Deep Inelastic Scattering (DIS) experiments as well.Comment: 16 pages, LaTeX, no figures, submitted to Phys. Rev.

    GRS computation of deep inelastic electron scattering on 4He

    Get PDF
    We compute cross sections for inclusive scattering of high energy electrons on 4He, based on the two lowest orders of the Gersch-Rodriguez-Smith (GRS) series. The required one- and two-particle density matrices are obtained from non-relativistic 4He wave functions using realistic models for the nucleon-nucleon and three-nucleon interaction. Predictions for E=3.6 GeV agree well with the NE3 SLAC-Virginia data.Comment: 18 pages, 7 figures, submitted to PR

    Muon-anti-neutrino <---> electron-anti-neutrino mixing: analysis of recent indications and implications for neutrino oscillation phenomenology

    Get PDF
    We reanalyze the recent data from the Liquid Scintillator Neutrino Detector (LSND) experiment, that might indicate anti-nu_muanti-nu_e mixing. This indication is not completely excluded by the negative results of established accelerator and reactor neutrino oscillation searches. We quantify the region of compatibility by means of a thorough statistical analysis of all the available data, assuming both two-flavor and three-flavor neutrino oscillations. The implications for various theoretical scenarios and for future oscillation searches are studied. The relaxation of the LSND constraints under different assumptions in the statistical analysis is also investigated.Comment: 17 pages (RevTeX) + 9 figures (Postscript) included with epsfig.st

    Charged current weak electroproduction of Delta resonance

    Full text link
    We study the weak production of Δ\Delta (i.e. e+pΔ0+νee^{-} + p \to \Delta^{0}+ \nu_{e} and e++pΔ+++νˉee^{+} + p \to \Delta^{++} + \bar{\nu}_{e}) in the intermediate energy range corresponding to the Mainz and TJNAF electron accelerators. The differential cross sections σ(θ)\sigma(\theta) are found to be of the order of 1039 10^{-39} cm2^2/sr, over a range of angles which increases with energy. The possibility of observing these reactions with the high luminosities available at these accelerators, and studying the weak N-Δ\Delta transition form factors through these reactions is discussed. The production cross section of N(1440)^*(1440) in the kinematic region of Δ\Delta production is also estimated and found to be small.Comment: 19 pages, REVTEX, 4 figure
    corecore