Conventional theories of nuclear interactions predict a net increase in the
distribution of virtual pions in nuclei relative to free nucleons. Analysis of
data from several nuclear experiments has led to claims of evidence against
such a pion excess. These conclusions are usually based on a collective theory
(RPA) of the pions, which may be inadequate. The issue is the energy dependence
of the nuclear response, which differs for theories with strong NN correlations
from the RPA predictions. In the present paper, information about the energy
dependence is extracted from sum rules, which are calculated for such a
correlated, noncollective nuclear theory. The results lead to much reduced
sensitivity of nuclear reactions to the correlations that are responsible for
the pion excess. The primary example is (p,n) spin transfer, for
which the expected effects are found to be smaller than the experimental
uncertainties. The analysis has consequences for Deep Inelastic Scattering
(DIS) experiments as well.Comment: 16 pages, LaTeX, no figures, submitted to Phys. Rev.