7 research outputs found

    Distance determination to 12 Type II-P Supernovae using the Expanding Photosphere Method

    Get PDF
    We use early-time photometry and spectroscopy of 12 Type II plateau supernovae (SNe IIP) to derive their distances using the expanding photosphere method (EPM). We perform this study using two sets of Type II supernova (SN II) atmosphere models, three filter subsets ({BV}\{BV\}, {BVI}\{BVI\}, {VI}\{VI\}), and two methods for the host-galaxy extinction, which leads to 12 Hubble diagrams. We find that systematic differences in the atmosphere models lead to ∌\sim 50% differences in the EPM distances and to a value of H0{\rm H_0} between 52 and 101 kms−1Mpc−1{\rm km s^{-1} Mpc^{-1}}. Using the {VI}\{VI\} filter subset we obtain the lowest dispersion in the Hubble diagram, {σΌ=0.32{\rm \sigma_{\mu} = 0.32} mag}. We also apply the EPM analysis to the well-observed SN IIP 1999em. With the {VI}\{VI\} filter subset we derive a distance ranging from 9.3 ±\pm 0.5 Mpc to 13.9 ±\pm 1.4 Mpc depending on the atmosphere model employed.Comment: Accepted for publication in the Astrophysical Journa

    Improved Standardization of Type II-P Supernovae: Application to an Expanded Sample

    Full text link
    In the epoch of precise and accurate cosmology, cross-confirmation using a variety of cosmographic methods is paramount to circumvent systematic uncertainties. Owing to progenitor histories and explosion physics differing from those of Type Ia SNe (SNe Ia), Type II-plateau supernovae (SNe II-P) are unlikely to be affected by evolution in the same way. Based on a new analysis of 17 SNe II-P, and on an improved methodology, we find that SNe II-P are good standardizable candles, almost comparable to SNe Ia. We derive a tight Hubble diagram with a dispersion of 10% in distance, using the simple correlation between luminosity and photospheric velocity introduced by Hamuy & Pinto 2002. We show that the descendent method of Nugent et al. 2006 can be further simplified and that the correction for dust extinction has low statistical impact. We find that our SN sample favors, on average, a very steep dust law with total to selective extinction R_V<2. Such an extinction law has been recently inferred for many SNe Ia. Our results indicate that a distance measurement can be obtained with a single spectrum of a SN II-P during the plateau phase combined with sparse photometric measurements.Comment: ApJ accepted version. Minor change

    Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle

    Get PDF
    Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability which ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In the case of SN 2016bdu, the first outburst (Event A) reached an absolute magnitude M(r) ~ -15.3 mag, while the second one (Event B) occurred over one month later and reached M(r) ~ -18 mag. By inspecting archival data, a faint source at the position of SN 2016bdu is detectable several times in the past few years. We interpret these detections as signatures of a phase of erratic variability, similar to that experienced by SN 2009ip between 2008 and mid-2012, and resembling the currently observed variability of the luminous blue variable SN 2000ch in NGC 3432. Spectroscopic monitoring of SN 2016bdu during the second peak initially shows features typical of a SN IIn. One month after the Event B maximum, the spectra develop broad Balmer lines with P Cygni profiles and broad metal features. At these late phases, the spectra resemble those of a typical Type II SN. All members of this SN 2009ip-like group are remarkably similar to the Type IIn SN 2005gl. For this object, the claim of a terminal SN explosion is supported by the disappearance of the progenitor star. The similarity with SN 2005gl suggests that all members of this family may finally explode as genuine SNe, although the unequivocal detection of nucleosynthesised elements in their nebular spectra is still missing.Comment: Submitted to MNRAS on April 10, 2017; re-submitted on June 23 including suggestions from the referee. 24 pages, 12 figures, 5 table

    Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle

    Get PDF
    Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability which ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In the case of SN 2016bdu, the first outburst (Event A) reached an absolute magnitude M(r) ~ -15.3 mag, while the second one (Event B) occurred over one month later and reached M(r) ~ -18 mag. By inspecting archival data, a faint source at the position of SN 2016bdu is detectable several times in the past few years. We interpret these detections as signatures of a phase of erratic variability, similar to that experienced by SN 2009ip between 2008 and mid-2012, and resembling the currently observed variability of the luminous blue variable SN 2000ch in NGC 3432. Spectroscopic monitoring of SN 2016bdu during the second peak initially shows features typical of a SN IIn. One month after the Event B maximum, the spectra develop broad Balmer lines with P Cygni profiles and broad metal features. At these late phases, the spectra resemble those of a typical Type II SN. All members of this SN 2009ip-like group are remarkably similar to the Type IIn SN 2005gl. For this object, the claim of a terminal SN explosion is supported by the disappearance of the progenitor star. The similarity with SN 2005gl suggests that all members of this family may finally explode as genuine SNe, although the unequivocal detection of nucleosynthesised elements in their nebular spectra is still missing. </p

    PROJET GALION. Gestion alternative de la pĂȘcherie chalutiĂšre du Golfe du Lion

    No full text
    AmĂ©liorer la gestion des ressources marines est donc un impĂ©ratif au maintien des entreprises de pĂȘche, c’est pourquoi les pĂȘcheurs chalutiers du golfe du Lion ont lancĂ© l’initiative du projet GALION pour permettre de dĂ©finir de nouveaux modes de gestion pour cette pĂȘcherie. Le projet intĂšgre plusieurs phases de collecte de donnĂ©es en mer dans le cadre d’un partenariat entre scientifiques, pĂȘcheurs et Ă©conomistes. Plusieurs actions sont menĂ©es au cours des trois annĂ©es du projet : 1. Cartographier la distribution des captures et rejets. 2. DĂ©finir des habitats sensibles ou Ă  risque. 3. Analyser la sĂ©lectivitĂ© des engins de pĂȘche et leur impact Ă©conomique. 4. Proposer des stratĂ©gies de pĂȘche limitant les rejets. Ainsi le projet GALION vise Ă  fournir aux pĂȘcheurs une aide Ă  la dĂ©cision pour la meilleure stratĂ©gie de pĂȘche Ă  adopter. Ce projet est portĂ© par l’AMOP, en partenariat avec l’Ifremer, le projet DISCARDLESS, le CĂ©pralmar, CapacitĂ©s Mer et SEANEO. Il a Ă©galement bĂ©nĂ©ficiĂ© des soutiens financiers de l’association France FiliĂšre PĂȘche, de la RĂ©gion Occitanie, de la RĂ©gion Provence Alpes CĂŽtes d’Azur, du Conseil DĂ©partemental du Gard et du Conseil DĂ©partemental de l’HĂ©rault

    Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle

    No full text

    UBVRIz

    No full text
    corecore