7 research outputs found

    Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic

    Get PDF
    The Black Death (1347-1352 CE) is the most renowned pandemic in human history, believed by many to have killed half of Europe's population. However, despite advances in ancient DNA research that conclusively identified the pandemic's causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, 'big data palaeoecology', which, starting from palynological data, evaluates the scale of the Black Death's mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death's mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics.The authors acknowledge the following funding sources: Max Planck Independent Research Group, Palaeo-Science and History Group (A.I., A.M. and C.V.); Estonian Research Council #PRG323, PUT1173 (A.Pos., T.R., N.S. and S.V.); European Research Council #FP7 263735 (A.Bro. and A.Plu.), #MSC 655659 (A.E.); Georgetown Environmental Initiative (T.N.); Latvian Council of Science #LZP-2020/2-0060 (N.S. and N.J.); LLNL-JRNL-820941 (I.T.); NSF award #GSS-1228126 (S.M.); Polish-Swiss Research Programme #013/2010 CLIMPEAT (M.Lam.), #086/2010 CLIMPOL (A.W.); Polish Ministry of Science and Higher Education #N N306 275635 (M.K.); Polish National Science Centre #2019/03/X/ST10/00849 (M.Lam.), #2015/17/B/ST10/01656 (M.Lam.), #2015/17/B/ST10/03430 (M.Sło.), #2018/31/B/ST10/02498 (M.Sło.), #N N304 319636 (A.W.); SCIEX #12.286 (K.Mar.); Spanish Ministry of Economy and Competitiveness #REDISCO-HAR2017-88035-P (J.A.L.S.); Spanish Ministry of Education, Culture and Sports #FPU16/00676 (R.L.L.); Swedish Research Council #421-2010-1570 (P.L.), #2018-01272 (F.C.L. and A.S.); Volkswagen Foundation Freigeist Fellowship Dantean Anomaly (M.B.), Spanish Ministry of Science and Innovation #RTI2018-101714-B-I00 (F.A.S. and D.A.S.), OP RDE, MEYS project #CZ.02.1.01/0.0/0.0/16_019/0000728 (P.P.

    Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic

    Get PDF
    The Black Death (1347–1352 CE) is the most renowned pandemic in human history, believed by many to have killed half of Europe’s population. However, despite advances in ancient DNA research that conclusively identified the pandemic’s causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, ‘big data palaeoecology’, which, starting from palynological data, evaluates the scale of the Black Death’s mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death’s mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics.The authors acknowledge the following funding sources: Max Planck Independent Research Group, Palaeo-Science and History Group (A.I., A.M. and C.V.); Estonian Research Council #PRG323, PUT1173 (A.Pos., T.R., N.S. and S.V.); European Research Council #FP7 263735 (A.Bro. and A.Plu.), #MSC 655659 (A.E.); Georgetown Environmental Initiative (T.N.); Latvian Council of Science #LZP-2020/2-0060 (N.S. and N.J.); LLNL-JRNL-820941 (I.T.); NSF award #GSS-1228126 (S.M.); Polish-Swiss Research Programme #013/2010 CLIMPEAT (M.Lam.), #086/2010 CLIMPOL (A.W.); Polish Ministry of Science and Higher Education #N N306 275635 (M.K.); Polish National Science Centre #2019/03/X/ST10/00849 (M.Lam.), #2015/17/B/ST10/01656 (M.Lam.), #2015/17/B/ST10/03430 (M.Sło.), #2018/31/B/ST10/02498 (M.Sło.), #N N304 319636 (A.W.); SCIEX #12.286 (K.Mar.); Spanish Ministry of Economy and Competitiveness #REDISCO-HAR2017-88035-P (J.A.L.S.); Spanish Ministry of Education, Culture and Sports #FPU16/00676 (R.L.L.); Swedish Research Council #421-2010-1570 (P.L.), #2018-01272 (F.C.L. and A.S.); Volkswagen Foundation Freigeist Fellowship Dantean Anomaly (M.B.), Spanish Ministry of Science and Innovation #RTI2018-101714-B-I00 (F.A.S. and D.A.S.), OP RDE, MEYS project #CZ.02.1.01/0.0/0.0/16_019/0000728 (P.P.)Peer reviewe

    Geophysical analysis at the Old Whaling site, Cape Krusenstern, Alaska, reveals the possible impact of permafrost loss on archaeological interpretation

    No full text
    The Old Whaling site at Cape Krusenstern, Alaska, has been the subject of contested interpretations stemming from an original theory proposed by J. Louis Giddings more than half a century ago. In an attempt to address recent suggestions that the occupational history is more complex than originally believed, the site was the subject of a non-invasive geophysical survey conducted by our team in 2011. The project served as a starting point for assessing the potential for archaeological remains at the site that had not been detected with previous investigations, and to gain a better understanding of site morphology. The investigation was implemented with two well-established geophysical methods, ground-penetrating radar (GPR) and magnetic gradiometry. The survey revealed no unequivocal evidence of additional occupations as has been recently suggested, but did reveal a dynamic site morphology that may have implications for archaeological interpretation

    Automated longitudinal intra-subject analysis (ALISA) for diffusion MRI tractography

    No full text
    Fiber tractography (FT), which aims to reconstruct the three-dimensional trajectories of white matter (WM) fibers non-invasively, is one of the most popular approaches for analyzing diffusion tensor imaging (DTI) data given its high inter- and intra-rater reliability and scan-rescan reproducibility. The major disadvantage of manual FT segmentations, unfortunately, is that placing regions-of-interest for tract selection can be very labor-intensive and time-consuming. Although there are several methods that can identify specific WM fiber bundles in an automated way, manual FT segmentations across multiple subjects performed by a trained rater with neuroanatomical expertise are generally assumed to be more accurate. However, for longitudinal DTI analyses it may still be beneficial to automate the FT segmentation across multiple time points, but then for each individual subject separately. Both the inter-subject and intra-subject automation in this situation are intended for subjects without gross pathology. In this work, we propose such an automated longitudinal intra-subject analysis (dubbed ALISA) approach, and assessed whether ALISA could preserve the same level of reliability as obtained with manual FT segmentations. In addition, we compared ALISA with an automated inter-subject analysis. Based on DTI data sets from (i) ten healthy subjects that were scanned five times (six-month intervals, aged 7.6-8.6years at the first scan) and (ii) one control subject that was scanned ten times (weekly intervals, 12.2years at the first scan), we demonstrate that the increased efficiency provided by ALISA does not compromise the high degrees of precision and accuracy that can be achieved with manual FT segmentations. Further automation for inter-subject analyses, however, did not provide similarly accurate FT segmentations
    corecore