377 research outputs found

    3-D Monte Carlo-Based Scatter Compensation in Quantitative I-131 SPECT Reconstruction

    Full text link
    We have implemented highly accurate Monte Carlo based scatter modeling (MCS) with 3-D ordered subsets expectation maximization (OSEM) reconstruction for I-131 single photon emission computed tomography (SPECT). The scatter is included in the statistical model as an additive term and attenuation and detector response are included in the forward/backprojector. In the present implementation of MCS, a simple multiple window-based estimate is used for the initial iterations and in the later iterations the Monte Carlo estimate is used for several iterations before it is updated. For I-131, MCS was evaluated and compared with triple energy window (TEW) scatter compensation using simulation studies of a mathematical phantom and a clinically realistic voxel-phantom. Even after just two Monte Carlo updates, excellent agreement was found between the MCS estimate and the true scatter distribution. Accuracy and noise of the reconstructed images were superior with MCS compared to TEW. However, the improvement was not large, and in some cases may not justify the large computational requirements of MCS. Furthermore, it was shown that the TEW correction could be improved for most of the targets investigated here by applying a suitably chosen scaling factor to the scatter estimate. Finally clinical application of MCS was demonstrated by applying the method to an I-131 radioimmunotherapy (RIT) patient study.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85854/1/Fessler47.pd

    3-D Monte Carlo-based Scatter Compensation in Quantitative I-131 SPECT Reconstruction

    Full text link
    We have implemented highly accurate Monte Carlo based scatter modeling (MCS) with 3-D ordered subsets expectation maximization (OSEM) reconstruction. The scatter is included in the statistical model as an additive term and attenuation and detector response are included in the forward/backprojector. In the present implementation of MCS, a simple multiple window-based estimate is used for the initial iterations and in the later iterations the Monte Carlo estimate is used for several iterations before it is updated. For I-131, MCS was evaluated and compared with triple energy window (TEW) scatter compensation using simulation studies of a mathematical phantom and a clinically realistic voxel-phantom. Even after just two Monte Carlo runs, excellent agreement was found between the MCS estimate and the true scatter distribution. Accuracy and noise of the reconstructed images were superior with MCS compared to TEW. However, the improvement was not large, and in some cases may not justify the large computational requirements of MCS. Finally clinical application of MCS was demonstrated by applying the method to a radioimmunotherapy (RIT) patient study.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85865/1/Fessler201.pd

    Validation of an automated method to quantify stress-induced ischemia and infarction in rest-stress myocardial perfusion SPECT.

    Get PDF
    Myocardial perfusion SPECT (MPS) is one of the frequently used methods for quantification of perfusion defects in patients with known or suspected coronary artery disease. This article describes open access software for automated quantification in MPS of stress-induced ischemia and infarction and provides phantom and in vivo validation

    Virtual verification of automotive steering systems

    Get PDF
    The vehicle industry is in a transformation where software and electronics are revolutionizing the way we engineer the cars of the future. This is particularly true for steering systems, which have developed from passive mechanical systems to now enabling advanced driver support systems and the evolution toward fully autonomous driving. With this ever increasing complexity, relying only on physical testing is no longer practical due to slow feedback loops from testing back to development and the lack of repeatability. The question addressed in this paper is how computational methods can help to increase test coverage, shorten development cycles and enable continuous integration of software for steering systems. In particular the development, validation and application of methods to virtually release steering systems for passenger vehicles is presented

    Renal cell carcinoma metastasis to the ciliary body responds to proton beam radiotherapy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report an unexpected presentation of metastatic renal cell carcinoma (RCC) to the ciliary body and an interesting response to proton beam radiotherapy.</p> <p>Case presentation</p> <p>We encountered a case of angle-closure glaucoma as the initial presentation of ocular metastasis to the ciliary body in a 65-year-old Caucasian man who had undergone right radical nephrectomy for RCC 15 years earlier. He underwent YAG (yttrium aluminium garnet) laser peripheral iridotomy while further metastatic workup took place. His condition was eventually diagnosed as stage IV metastatic RCC of the clear cell type and involved multiple sites, including the ciliary body, brain, lungs, liver, and pancreas. The progression of RCC metastasis to the ciliary body was studied for 16 months. The ciliary body mass continued to grow despite systemic treatment with temsirolimus and interleukin-2 and intravitreal injections of bevacizumab. The tumor size peaked at 6.11 × 6.06 mm before the start of proton therapy, which reduced the tumor size to 5.07 × 4.39 mm.</p> <p>Conclusions</p> <p>RCC can produce metastases involving unusual sites many years after resection of the primary tumor. Proton therapy was found to be effective in treating RCC metastasis to the ciliary body in settings in which other treatment modalities failed.</p

    A Monte Carlo investigation of dual-energy-window scatter correction for volume-of-interest quantification in 99Tcm SPECT

    Full text link
    Using Monte Carlo simulation of 99Tcm single-photon-emission computed tomography (SPECT), the authors investigate the effects of tissue-background activity, tumour location, patient size, uncertainty of energy windows, and definition of tumour region on the accuracy of quantification. The dual-energy-window method of correction for Compton scattering is employed and the multiplier which yields correct activity for the volume-of-interest (VOI) as a whole calculated. The model is usually a sphere containing radioactive water located within a cylinder filled with a more dilute solution of radioactivity. Two simulation codes are employed. Reconstruction is by ML-EM algorithm with attenuation compensation. The scatter multiplier depends only slightly on the sphere location or the cylinder diameter. It also depends little on whether correction is before or after reconstruction. At low background level, it changes with VOI size, but not at higher background. For a geometrical VOI, it is 1.25 at zero background, decreases sharply to 0.56 for equal concentrations, and is 0.44 when the background concentration is very large. Quantification is accurate (less than 9% error) if the test background is reasonably close to that used in setting the universal scatter-multiplier value, or if the rest backgrounds are always large and so is the universal-value background, but not if the test backgrounds cover a large range of values including zero. Results largely agree with those from experiment after the experimental data with background is re-evaluated with prejudice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48959/2/pb950115.pd

    Impact of SPECT corrections on 3D-dosimetry for TARE

    Get PDF
    Purpose: Many centers aim to plan liver transarterial radioembolization (TARE) with dosimetry, even without CT-based attenuation correction (AC), or with unoptimized scatter correction (SC) methods. This work investigates the impact of presence vs absence of such corrections, and limited spatial resolution, on 3D dosimetry for TARE. Methods: Three voxelized phantoms were derived from CT images of real patients with different body sizes. Simulations of 99mTc-SPECT projections were performed with the SIMIND code, assuming three activity distributions in the liver: uniform, inside a "liver's segment," or distributing multiple uptaking nodules ("nonuniform liver"), with a tumoral liver/healthy parenchyma ratio of 5:1. Projection data were reconstructed by a commercial workstation, with OSEM protocol not specifically optimized for dosimetry (spatial resolution of 12.6 mm), with/without SC (optimized, or with parameters predefined by the manufacturer; dual energy window), and with/without AC. Activity in voxels was calculated by a relative calibration, assuming identical microspheres and 99mTc-SPECT counts spatial distribution. 3D dose distributions were calculated by convolution with 90Y voxel S-values, assuming permanent trapping of microspheres. Cumulative dose-volume histograms in lesions and healthy parenchyma from different reconstructions were compared with those obtained from the reference biodistribution (the "gold standard," GS), assessing differences for D95%, D70%, and D50% (i.e., minimum value of the absorbed dose to a percentage of the irradiated volume). γ tool analysis with tolerance of 3%/13 mm was used to evaluate the agreement between GS and simulated cases. The influence of deep-breathing was studied, blurring the reference biodistributions with a 3D anisotropic gaussian kernel, and performing the simulations once again. Results: Differences of the dosimetric indicators were noticeable in some cases, always negative for lesions and distributed around zero for parenchyma. Application of AC and SC reduced systematically the differences for lesions by 5%–14% for a liver segment, and by 7%–12% for a nonuniform liver. For parenchyma, the data trend was less clear, but the overall range of variability passed from −10%/40% for a liver segment, and −10%/20% for a nonuniform liver, to −13%/6% in both cases. Applying AC, SC with preset parameters gave similar results to optimized SC, as confirmed by γ tool analysis. Moreover, γ analysis confirmed that solely AC and SC are not sufficient to obtain accurate 3D dose distribution. With breathing, the accuracy worsened severely for all dosimetric indicators, above all for lesions: with AC and optimized SC, −38%/−13% in liver's segment, −61%/−40% in the nonuniform liver. For parenchyma, D50% resulted always less sensitive to breathing and sub-optimal correction methods (difference overall range: −7%/13%). Conclusions: Reconstruction protocol optimization, AC, SC, PVE and respiratory motion corrections should be implemented to obtain the best possible dosimetric accuracy. On the other side, thanks to the relative calibration, D50% inaccuracy for the healthy parenchyma from absence of AC was less than expected, while the optimization of SC was scarcely influent. The relative calibration therefore allows to perform TARE planning, basing on D50% for the healthy parenchyma, even without AC or with suboptimal corrections, rather than rely on nondosimetric methods

    The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081

    Get PDF
    The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the genome evolution of other human enteropathogens

    Increased use of cross-sectional imaging for follow-up does not improve post-recurrence survival of surgically treated initially localized R.C.C.: results from a European multicenter database (R.E.C.U.R.).

    Get PDF
    Objective: Modality and frequency of image-based renal cell carcinoma (R.C.C.) follow-up strategies are based on risk of recurrence. Using the R.E.C.U.R.-database, frequency of imaging was studied in regard to prognostic risk groups. Furthermore, it was investigated whether imaging modality utilized in contemporary follow-up were associated with outcome after detection of recurrence. Moreover, outcome was compared based on whether the assessment of potential curability was a pre-defined set of criteria's (per-protocol) or stated by the investigator. Materials and methods: Consecutive non-metastatic R.C.C. patients (n = 1,612) treated with curative intent at 12 institutes across eight European countries between 2006 and 2011 were included. Leibovich or U.I.S.S. risk group, recurrence characteristics, imaging modality, frequency and survival were recorded. Primary endpoints were overall survival (O.S.) after detection of recurrence and frequency of features associated with favourable outcome (non-symptomatic recurrences and detection within the follow-up-programme). Results: Recurrence occurred in 336 patients. Within low, intermediate and high risk for recurrence groups, the frequency of follow-up imaging was highest in the early phase of follow-up and decreased significantly over time (p < 0.001). However, neither the image modality for detection nor ≥ 50% cross-sectional imaging during follow-up were associated with improved O.S. after recurrence. Differences between per protocol and investigator based assessment of curability did not translate into differences in O.S. Conclusions: As expected, the frequency of imaging was highest during early follow-up. Cross-sectional imaging use for detection of recurrences following surgery for localized R.C.C. did not improve O.S. post-recurrence. Prospective studies are needed to determine the value of imaging in follow-up
    corecore