23 research outputs found

    Calibration and evaluation of AVIRIS data: Cripple Creek in October 1987

    Get PDF
    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were obtained over Cripple Creek and Canon City Colorado on October 19, 1987 at local noon. Multiple ground calibration sites were measured within both areas with a field spectrometer and samples were returned to the laboratory for more detailed spectral characterization. The data were used to calibrate the AVIRIS data to ground reflectance. Once calibrated, selected spectra in the image were extracted and examined, and the signal to noise performance was computed. Images of band depth selected to be diagnostic of the presence of certain minerals and vegetation were computed. The AVIRIS data were extremely noisy, but images showing the presence of goethite, kaolinite and lodgepole pine trees agree with ground checks of the area

    Character and spatial distribution of OH/H<SUB>2</SUB>O on the surface of the moon seen by M<SUP>3</SUP> on Chandrayaan-1

    Get PDF
    The search for water on the surface of the anhydrous Moon had remained an unfulfilled quest for 40 years. However, the Moon Mineralogy Mapper (M3) on Chandrayaan-1 has recently detected absorption features near 2.8 to 3.0 micrometers on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer hydrogen abundance data suggests that the formation and retention of hydroxyl and water are ongoing surficial processes. Hydroxyl/water production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration

    Nothing a Hot Bath Won't Cure: Infection Rates of Amphibian Chytrid Fungus Correlate Negatively with Water Temperature under Natural Field Settings

    Get PDF
    Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10–50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75–100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The surface composition of Iapetus: Mapping results from Cassini VIMS

    No full text
    Cassini VIMS has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. A very close fly-by of Iapetus on September 10, 2007 provided the best data on the spectral signature and spatial extent of dark material on Iapetus. This Cassini Rev 49 Iapetus fly-by provided spatially resolved imaging spectroscopy data of the dark material and the leading/trailing side transition from the dark material to visually bright ice on the trailing side. Compositional mapping and radiative transfer modeling shows that the dark material is composed of metallic iron, nano-size iron oxide (hematite), CO2, H2O ice, and possible signatures of ammonia, bound water, H2 or OH-bearing minerals, trace organics, and as yet unidentified materials. CO2 indicates a pattern of increasing CO2 strength from the leading side apex to the transition zone to the icy trailing side. A Rayleigh scattering peak in the visible part of the spectrum indicates the dark material has a large component of fine, sub-0.5-ÎĽm diameter particles consistent with nanophase hematite and nanophase iron. Spectral signatures of ice also indicate that sub-0.5-ÎĽm diameter particles are present in the icy regions. Multiple lines of evidence point to an external origin for the dark material on Iapetus, including the global spatial pattern of dark material, local patterns including crater and cliff walls shielding implantation on slopes facing away from the leading side, exposing clean ice, and slopes facing the leading direction which show higher abundances of dark material. Multiple spectral features and overall spectral shape of the dark material on Iapetus match those seen on Phoebe, Hyperion, Dione, Epimetheus, Saturn's rings Cassini Division, and the F-ring implying the material has a common composition throughout the Saturn system. The dark material appears to have significant components of nanophase metallic iron and nanophase hematite contributing to the observed UV absorption. The blue scattering peak with a strong UV-visible absorption is observed in spectra of all satellites that contain dark material, again pointing to a common origin of contamination by metallic iron that is partially oxidized

    This PDF file includes: Materials and Methods

    Get PDF
    is designed to map the surface mineralogy of the Moon in geologic context at high spatial and spectral resolution using reflected solar radiation at near-infrared wavelengths (1). These data provide in depth information about geologic processes involved in the early crustal evolution of a silicate body in our Solar System. M3 is a “push-broom ” imaging spectrometer designed at full resolution to acquire 260 spectral channels from 430 to 3000 nm simultaneously for each of 600 cross-track spatial elements. Spacecraft motion provides the second dimension of spatial information, to build a three-dimensional cube of inherently co-registered spectra. The first of four planned optical periods of Chandrayaan-1 operation extended through February 2009. Over this period, M3 acquired near-infrared low-resolution spectra for ~60 % of the lunar nearside (140 m/pixel; 85 spectral channels from 460 to 3000 nm) comprising more than a billion individual spectral measurements. All M3 spectra in this manuscript were acquired in the M3 low-resolution mode, which has only 25 spectral channels between 2000 and 3000 nm (instead of 100 spectral channels for M3 full-resolution). With initial calibration, these M3 data have proved to be of high quality and the instrument performed within specifications (2). Second order calibration steps, including in-flight calibrations and band-to-band corrections are ongoin
    corecore