197 research outputs found

    Collision, Collusion and Coincidence: Pop Art’s Fairground Parallel

    Get PDF
    This article looks at parallel methods, motivations and modes of consumption between formative British pop art and British fairground art. I focus on two strands, the emergent critical work of the Independent Group and the school of artists based at the Royal College of Art under the nominal leadership of Peter Blake. I use iconographical and iconological methods to compare the content of the art, and then examine how pop art tried to create both a critical and playful distancing from established rules and practices of the artistic canon. I focus on non-institutional cultural groupings and diffuse production and consumption models

    Clinical experience with combination BRAF/MEK inhibitors for melanoma with brain metastases: a real-life multicenter study

    Full text link
    BRAF and MEK kinase inhibitors can be highly effective in treating BRAF-mutant melanomas, but their safety and activity in patients with active/symptomatic brain metastases are unclear. We sought to shed light on this open clinical question. We conducted a multicenter retrospective study on real-life patients with melanoma and active brain metastases treated with combination BRAF/MEK inhibitors. A total of 65 patients were included (38 men and 27 women; median age: 49 years). Of them, 53 patients received dabrafenib/trametinib, 10 received vemurafenib/cobimetinib, one received encorafenib/binimetinib, and one received vemurafenib/trametinib. We did not observe any unexpected treatment-related safety signals in our cohort. Overall, 17 patients continued on therapy through the cutoff date. After initiation of therapy, steroid dose could be decreased in 22 of 33 patients (11 tapered off entirely), anticonvulsants were stopped in four of 21, and narcotics were stopped in four of 12. Median progression-free survival from the start of therapy was 5.3 months (95% confidence interval: 3.6-6.1), and median overall survival was 9.5 months (95% confidence interval: 7.7-13.5). A total of 20 patients were surviving at the cutoff date. Univariate analysis of age, sex, ulceration status, thickness, stage, location, or lactate dehydrogenase did not reveal significant predictors of progression-free survival or overall survival within our cohort, but multivariate analysis suggested that older age, lower risk location of original lesion, and nodular melanoma are poor prognostic indicators. Combination therapy with BRAF/MEK inhibitors is a viable treatment option for patients with BRAF-mutant melanoma and brain metastases, but further studies should help to define the optimal treatment approach in this population

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Apolipoprotein CIII and N-terminal prohormone b-type natriuretic peptide as independent predictors for cardiovascular disease in type 2 diabetes

    Get PDF
    Background and aims: Developing sparse panels of biomarkers for cardiovascular disease in type 2 diabetes would enable risk stratification for clinical decision making and selection into clinical trials. We examined the individual and joint performance of five candidate biomarkers for incident cardiovascular disease (CVD) in type 2 diabetes that an earlier discovery study had yielded. Methods: Apolipoprotein CIII (apoCIII), N-terminal prohormone B-type natriuretic peptide (NT-proBNP), high sensitivity Troponin T (hsTnT), Interleukin-6, and Interleukin-15 were measured in baseline serum samples from the Collaborative Atorvastatin Diabetes trial (CARDS) of atorvastatin versus placebo. Among 2105 persons with type 2 diabetes and median age of 62.9 years (range 39.2–77.3), there were 144 incident CVD (acute coronary heart disease or stroke) cases during the maximum 5-year follow up. We used Cox Proportional Hazards models to identify biomarkers associated with incident CVD and the area under the receiver operating characteristic curves (AUROC) to assess overall model prediction. Results: Three of the biomarkers were singly associated with incident CVD independently of other risk factors; NT-proBNP (Hazard Ratio per standardised unit 2.02, 95% Confidence Interval [CI] 1.63, 2.50), apoCIII (1.34, 95% CI 1.12, 1.60) and hsTnT (1.40, 95% CI 1.16, 1.69). When combined in a single model, only NT-proBNP and apoCIII were independent predictors of CVD, together increasing the AUROC using Framingham risk variables from 0.661 to 0.745. Conclusions: The biomarkers NT-proBNP and apoCIII substantially increment the prediction of CVD in type 2 diabetes beyond that obtained with the variables used in the Framingham risk score
    • 

    corecore