4 research outputs found

    Revised Recommendations and Next Steps for Prior Learning Assessment in the University of Maine System

    Get PDF
    The University of Maine System (UMS) Prior Learning Assessment (PLA) Task Force makes the following slightly revised recommendations to the University of Maine System Credit Transfer Project Steering Committee and the University of Maine System Chief Academic Officers. The Recommendations and Next Steps below form a protocol that the UMS PLA Task Force recommends piloting for a period of four years, at which time the participating institutions will review their efficacy

    How Reproducible Are Surface Areas Calculated from the BET Equation?

    No full text
    Porosity and surface area analysis play a prominent role in modern materials science, where their determination spans the fields of natural sciences, engineering, geology and medical research. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory,[1] which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials.[2] Since the BET method was first developed, there has been an explosion in the field of nanoporous materials with the discovery of synthetic zeolites,[3] nanostructured silicas,[4–6] metal-organic frameworks (MOFs),[7] and others. Despite its widespread use, the manual calculation of BET surface areas causes a significant spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, we have brought together 60 labs with strong track records on the study of nanoporous materials. We provided eighteen already measured raw adsorption isotherms and asked these researchers to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values for each isotherm. We demonstrate here that the reproducibility of BET area determination from identical isotherms is a largely ignored issue, raising critical concerns over the reliability of reported BET areas in micro- and mesoporous materials in the literature. To solve this major issue, we have developed a new computational approach to accurately and systematically determine the BET area of nanoporous materials. Our software, called BET Surface Identification (BETSI), expands on the well-known Rouquerol criteria and makes, for the first time, an unambiguous BET area assignment possible

    How reproducible are surface areas calculated from the BET equation?

    No full text
    Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible

    How Reproducible are Surface Areas Calculated from the BET Equation?

    Get PDF
    Funder: Sandia National Laboratories; Id: http://dx.doi.org/10.13039/100006234Funder: U.S. Department of Energy; Id: http://dx.doi.org/10.13039/100000015Funder: Office of Energy Efficiency and Renewable Energy; Id: http://dx.doi.org/10.13039/100006134Funder: Hydrogen and Fuel Cell Technologies Office; Id: http://dx.doi.org/10.13039/100010268Funder: Active Co. ResearchFunder: Spanish MICINNPorosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible
    corecore