92 research outputs found

    BIOL 216--Ecology

    Get PDF
    The primary emphasis in Ecology is on efforts to explain and predict the distribution and abundance of organisms, how ecological communities are composed, and why they vary in time and space. Recommended course background: one or more courses from organismal biology group and one college-level math course. Offered every year

    BIOL 106--Introductory Biostatistics

    Get PDF
    An introduction to mathematical and statistical methods that are most useful to biologists, this course provides skills that are useful in organizing and summarizing data, graphic methods of data presentation, and testing hypotheses based on experimental results. Key mathematical methods for describing biological phenomena are included, along with basic techniques for identifying differences among groups and relationships among variables. This course may be used by biology majors to fulfill part of their mathematics requirement; alternatively, it may be counted among the required ten biology courses for the major

    Impact of inter- and intra-specific competition among larvae on larval, adult, and life-table traits of Aedes aegypti and Aedes albopictus females

    Get PDF
    1. Few studies have taken a comprehensive approach of measuring the impact of inter- and intra-specific larval competition on adult mosquito traits. In this study, the impact of competition among Aedes aegypti (L.) and A. albopictus (Skuse) was quantified over the entire life of a cohort.2. Competitive treatments affected hatch-to-adult survivorship and the development time to adulthood of females for both species but affected the median wing length of females only for A. albopictus. Competitive treatments had no significant effect on the median adult female longevity nor were there any effects on other individual traits related to blood feeding and reproductive success.3. Analysis of life table traits revealed no effect of competitive treatment on the net reproductive rate (R0) but there were significant effects on the cohort generation time (Tc) and the cohort rate of increase (r) for both species.4. Inter- and intra-specific competition among Aedes larvae may produce individual and population-level effects that are manifest in adults; however, benign conditions may enable resulting adults to compensate for some impacts of competition, particularly those affecting blood-feeding success, fecundity, and the net reproductive rate, R0. The effect of competition, therefore, affects primarily larva-to-adult survivorship and the larval development time, which in turn impacts the cohort generation time, Tc, and ultimately the cohort rate of increase, r.5. The lack of effects of the larval rearing environment on adult longevity suggests that effects on vectorial capacity owing to longevity may be limited if adults have easy access to sugar and bloodmeals.Peer reviewedEntomology and Plant Patholog

    Phylogenomics reveals the history of host use in mosquitoes

    Get PDF
    Mosquitoes have profoundly affected human history and continue to threaten human health through the transmission of a diverse array of pathogens. The phylogeny of mosquitoes has remained poorly characterized due to difficulty in taxonomic sampling and limited availability of genomic data beyond the most important vector species. Here, we used phylogenomic analysis of 709 single copy ortholog groups from 256 mosquito species to produce a strongly supported phylogeny that resolves the position of the major disease vector species and the major mosquito lineages. Our analyses support an origin of mosquitoes in the early Triassic (217 MYA [highest posterior density region: 188–250 MYA]), considerably older than previous estimates. Moreover, we utilize an extensive database of host associations for mosquitoes to show that mosquitoes have shifted to feeding upon the blood of mammals numerous times, and that mosquito diversification and host-use patterns within major lineages appear to coincide in earth history both with major continental drift events and with the diversification of vertebrate classes. © 2023, Springer Nature Limited

    Pulsed Energy Storage System Design

    Full text link
    A superconductive energy storage magnet which is connected to the three phase power system could be designed, constructed, and placed in operation at Fermilab which would essentially eliminate the large repetitive power pulses now required from the power system. In addition to the power pulses, voltage flicker is also caused due to the reactive power pulsation. Specifically, a one megawatt hour superconductive energy storage magnet and a 2.00 megawatt thyristorized converter can achieve nullification of these power pulses up to 400 GEV synchrotron operation. Above 400 GEV, operation should be possible up to 500 GEV with appreciable less power pulsing requirements from the system than are now considered permissible. Carried to successful completion, this project would serve to advance applied superconductivity to a highly significant degree. The effect would be of world wide importance to both high energy physics and to the electric power industry. The preliminary magnet design is a 1 MWh dipole composed of cryogenically stable composite conductors connected in parallel with aluminum shield windings. The shield windings carry impressed pulsed currents while eliminating pulsed currents from the dc superconductive windings. Without pulsed currents or pulsed magnetic fields there are no ac losses in standard helium. The major radius of the dipole is 8.85 m; the minor radius is 0.69m; there are 188 turns at 80,000 A and each turn is 4 conductors wound in parallel. The 20,000 A TiNb-copper composite conductor is l0x 1.12 cm in cross section similar to but larger than the FNAL bubble chamber conductor. The shield is 188 turns (equal number of turns is a shielding condition) of hollow aluminum conductor cooled via circulated cold helium gas at 40K. The turns are spaced around the minor circumference according to a cosine distribution which produces zero internal field. In use the shield loss converted to room temperature power is about .8MW when 0.1 MWh is used from a 1 MWh storage dipole. The 0.1 MWh is sufficient to provide complete load leveling for 400 GEV pulses, and operation at 500 GEV with lower power transients than are presently experienced

    Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways. (Résumé d'auteur

    Tick-, Mosquito-, and Rodent-Borne Parasite Sampling Designs for the National Ecological Observatory Network [Special Feature: NEON Design]

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways
    • …
    corecore