146 research outputs found

    Extreme Events design and Mitigation Methods: A Review

    Get PDF
    Recently, extreme events have highlighted their potentially tragic effects on structural and infrastructure systems. Resilience of the Community to these extreme vents is an important issue of increasing more concern for developing design methods. Such extreme events scenarios involve many uncertainties, such as the intensity, location, and period. The extreme events may include those caused by various natural or manmade hazards, such as earthquake, strong winds, fire, blast, etc. Compared to other events, earthquake and wind are particularly critical due to their significant threats to the global structure performance and more challenges for design. Researchers have recognized that proper evaluation, modeling, and assessment of the effects of extreme events are fundamental to ensure the desired performance of structures. Therefore, the concern for developing appropriate methodologies to evaluate and design structures that can withstand the effects of extreme events has become a very active field of research in recent years. Improvement of building codes and development of new strategies are needed to mitigate the disastrous effects of extreme events. This paper presents a comprehensive review of literature surrounding designing building structures for extreme events. First, a general overview of the extreme events design and different objectives of approaches is conducted. Furthermore, a review related literature surrounding designing for earthquake resistance guidelines is presented, also highlights Performance-Based Seismic Design objectives. The available literature includes many studies for the provisions included in different design codes (China, United States and Europe).  A review of literature related to wind resistance design with an overview of Performance Based Wind Design of building design method for the control of winds impacting on building structures is also presented

    Stochastic seismic response analysis of nonlinear structure with random parameters

    Get PDF
    In the present paper, a dimension-reduction modeling method is proposed for a dual stochastic dynamic system of non-stationary ground motion stochastic processes and stochastic structures. In the proposed method, the random variables describing the stochastic ground motions and structural parameters are respectively represented by the functions of one elementary random variable, resulting in the entire stochastic dynamic system can be represented by merely two elementary random variables. Since the number of elementary random variables needed is extremely small, the set of representative points in regard to the elementary random variables can thus be selected by number theoretical method. Benefiting from the proposed method, it can be conveniently combined with the probability density evolution method to realize the dynamic response analysis and dynamic reliability evaluation of nonlinear stochastic structures. The seismic response analysis of an eight-storey reinforced concrete frame structure with random parameters subjected to non-stationary stochastic ground motions are investigated as case studies. Numerical results fully demonstrated the effectiveness of the proposed method

    Phase relations in the Ta2O5-WO3-SiO2 system

    Get PDF
    Subsolidus relations and liquidus boundaries in the TaO-WO-SiO system at temperatures ranging from 1200 °C to 1500 °C were investigated. Phase diagrams were constructed. Compounds with stoichiometries of TaWO, TaWO and TaWO formed in the TaO-WO subsystem at 1200 °C. SiO was compatible with each of the compounds. A solid solution with a formula of (1 − x) TaO·xWO formed on the TaO-WO line in the compositional range of TaO:WO > 11:4. SiO had a maximum solubility of 25% SiO in the solid solution. Liquid phase first appeared in the WO-rich corner at 1300 °C. As the temperature was increased up to 1500 °C, the liquidus area boundary gradually expanded towards the SiO- and the TaO-rich corners

    Patterns of unmet supportive needs and relationship to quality of life in Chinese cancer patients

    Get PDF
    ObjectiveThis study aimed to (1) identify distinct patterns of unmet needs in Chinese cancer patients; (2) examine whether sociodemographic and medical characteristics distinguished these patterns; and (3) examine whether people with distinct patterns reported differential quality of life (QoL). MethodsThis cross-sectional study recruited 301 cancer patients from 2 hospitals in China. The 34-item Supportive Care Needs Survey Short-Form was used to measure unmet needs across 5 domains: physical and daily living, psychological, patient care and support, health systems and information, and sexuality. Latent class analysis was performed to identify patterns of unmet needs across these domains. ResultsFour patterns of unmet needs were identified, differing in levels and nature of unmet needs. Participants in class 1 (47%) reported few unmet needs. Patients in class 2 (15%) had moderate levels of unmet needs, displaying similar levels across 5 domains. People in class 3 (25%) and class 4 (13%) reported similarly high levels on psychological, health care system and information, physical and daily living, and patient care, but differing in sexuality, with class 3 reporting low levels while class 4 high on sexuality. None of sociodemographic and medical characteristics distinguished these patterns significantly. Compared to other classes, people in class 1 reported highest levels of QoL. ConclusionsThis study demonstrates the existence of 4 patterns of unmet supportive needs in Chinese cancer patients. Patients with few unmet needs reported the best QoL

    Genomic analyses provide insights into peach local adaptation and responses to climate change

    Get PDF
    The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.info:eu-repo/semantics/publishedVersio

    Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato

    Get PDF
    SummaryInvestigations into the role of tomato ARF6 and ARF8 reveal that they are critical components in floral and gynoecium development before anthesis.Auxin regulates the expression of diverse genes that affect plant growth and development. This regulation requires AUXIN RESPONSE FACTORS (ARFs) that bind to the promoter regions of these genes. ARF6 and ARF8 in Arabidopsis thaliana are required to promote inflorescence stem elongation and late stages of petal, stamen, and gynoecium development. All seed plants studied thus far have ARF6 and ARF8 orthologues as well as the microRNA miR167, which targets ARF6 and ARF8. Whether these genes have broadly conserved roles in flower development is not known. To address this question, the effects of down-regulation of ARF6 and ARF8 were investigated through transgenic expression of Arabidopsis MIR167a in tomato, which diverged from Arabidopsis before the radiation of dicotyledonous plants approximately 90–112 million years ago. The transgenic tomato plants overexpressing MIR167a exhibited reductions in leaf size and internode length as well as shortened petals, stamens, and styles. More significantly, the transgenic plants were female-sterile as a result of failure of wild-type pollen to germinate on the stigma surface and/or to grow through the style. RNA-Seq analysis identified many genes with significantly altered expression patterns, including those encoding products with functions in ‘transcription regulation’, ‘cell wall’ and ‘lipid metabolism’ categories. Putative orthologues of a subset of these genes were also differentially expressed in Arabidopsis arf6 arf8 mutant flowers. These results thus suggest that ARF6 and ARF8 have conserved roles in controlling growth and development of vegetative and flower organs in dicots

    Perovskite-molecule composite thin films for efficient and stable light-emitting diodes

    Get PDF
    Abstract: Although perovskite light-emitting diodes (PeLEDs) have recently experienced significant progress, there are only scattered reports of PeLEDs with both high efficiency and long operational stability, calling for additional strategies to address this challenge. Here, we develop perovskite-molecule composite thin films for efficient and stable PeLEDs. The perovskite-molecule composite thin films consist of in-situ formed high-quality perovskite nanocrystals embedded in the electron-transport molecular matrix, which controls nucleation process of perovskites, leading to PeLEDs with a peak external quantum efficiency of 17.3% and half-lifetime of approximately 100 h. In addition, we find that the device degradation mechanism at high driving voltages is different from that at low driving voltages. This work provides an effective strategy and deep understanding for achieving efficient and stable PeLEDs from both material and device perspectives

    ESTs, cDNA microarrays, and gene expression profiling : tools for dissecting plant physiology and development

    Get PDF
    Gene expression profiling holds tremendous promise for dissecting the regulatory mechanisms and transcriptional networks that underlie biological processes. Here we provide details of approaches used by others and ourselves for gene expression profiling in plants with emphasis on cDNA microarrays and discussion of both experimental design and downstream analysis. We focus on methods and techniques emphasizing fabrication of cDNA microarrays, fluorescent labeling, cDNA hybridization, experimental design, and data processing. We include specific examples that demonstrate how this technology can be used to further our understanding of plant physiology and development (specifically fruit development and ripening) and for comparative genomics by comparing transcriptome activity in tomato and pepper fruit

    A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits

    Get PDF
    Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop.This work was supported by funding from the Agricultural Science and Technology Innovation Program (to Yongyang Xu, S.H., Z.Z. and H.W.), the China Agriculture Research System (CARS-25 to Yongyang Xu and H.W.), the Leading Talents of Guangdong Province Program (00201515 to S.H.), the Shenzhen Municipal (The Peacock Plan KQTD2016113010482651 to S.H.), the Dapeng district government, National Natural Science Foundation of China (31772304 to Z.Z.), the Science and Technology Program of Guangdong (2018B020202007 to S.H.), the National Natural Science Foundation of China (31530066 to S.H.), the National Key R&D Program of China (2016YFD0101007 to S.H.), USDA National Institute of Food and Agriculture Specialty Crop Research Initiative (2015-51181-24285 to Z.F.), the European Research Council (ERC-SEXYPARTH to A.B.), the Spanish Ministry of Economy and Competitiveness (AGL2015–64625-C2-1-R to J.G.-M.), Severo Ochoa Programme for Centres of Excellence in R&D 2016–2010 (SEV-2015–0533 to J.G.-M.), the CERCA Programme/Generalitat de Catalunya to J.G.-M. and the German Science Foundation (SPP1991 Taxon-OMICS to H.S.)

    A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits

    Get PDF
    Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop.info:eu-repo/semantics/acceptedVersio
    corecore