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Summary

Gene expression profiling holds tremendous promise for dissecting the regulatory mechanisms and

transcriptional networks that underlie biological processes. Here we provide details of approaches used by

others and ourselves for gene expression profiling in plants with emphasis on cDNA microarrays and

discussion of both experimental design and downstream analysis. We focus on methods and techniques

emphasizing fabrication of cDNA microarrays, fluorescent labeling, cDNA hybridization, experimental design,

and data processing. We include specific examples that demonstrate how this technology can be used to

further our understanding of plant physiology and development (specifically fruit development and ripening)

and for comparative genomics by comparing transcriptome activity in tomato and pepper fruit.

Keywords: expressed sequence tags, expression profiling, transcriptome, digital expression analysis,

genomics.

Introduction

Typical approaches to gene identification and functional

characterization have and continue to involve protein char-

acterization, peptide sequence determination, and identifi-

cation of the corresponding DNA sequence. More recently,

expressed sequence tags (ESTs), microarrays, large-scale

gene expression (transcriptome) profiling, and associated

informatics technologies are rapidly becoming common-

place in the plant sciences. These ‘genomic’ approaches

typically take advantage of technologies for characterizing

large numbers of nucleic acid sequences, bioinformatics,

and the expanding collection of nucleic acid sequence data

from diverse taxa. ‘Systems biology’ attempts to combine

large-scale DNA sequence, gene expression, protein, meta-

bolite, genotype, and/or phenotype data to develop a com-

prehensive understanding of biological process (see special

issue of Plant Physiology 132, 2003 for numerous articles).

Combination of these approaches also makes it possible to

extract more meaningful functional information as new DNA

sequence data are generated (see Rose et al., this issue).

While the potential of this technology is enormous, the

utility of large-scale expression data is not always well

understood, nor are the limitations in analysis and



interpretation. Comprehensive transcriptome analysis

should make it possible to identify and dissect complex

genetic networks that underlie processes critical to physiol-

ogy, development, and response. For example, gene regu-

latory networks have been inferred using microarray data

obtained from a variety of organisms (Hashimoto et al.,

2004; de Hoon et al., 2003; Shmulevich et al., 2003), and it is

also possible to correlate these genetic networks with

metabolic processes (de la Fuente et al., 2002; Mendes,

2001). Gene networks are also being dissected in plants for

processes ranging from seed filling to cold tolerance (Fowler

and Thomashow, 2002; Ruuska et al., 2002). Further charac-

terization of gene networks in plants will help us to

understand the molecular basis of plant processes and

identify new targets for manipulating biochemical, physio-

logical, and developmental processes in crop species.

Nevertheless, a comprehensive characterization of the tran-

scriptome is not a prerequisite for studying every biological

question and the value of such an approach can only be

weighed in light of a clearer understanding of the possibil-

ities and caveats of transcriptome profiling. Here we provide

insights into transcriptome profiling based on cDNA

sequences as this technology presently represents one of

the more accessible avenues for developing comprehensive

gene expression data.

Expressed sequence tags: tools for gene discovery and

expression analysis

Expressed sequence tags are created by sequencing the 5¢
and/or 3¢ ends of randomly isolated gene transcripts that

have been converted into cDNA (Adams et al., 1991). Despite

the fact that a typical EST represents only a portion

(approximately 200–900 nucleotides) of a coding sequence,

en masse this partial sequence data is of substantial utility.

For example, EST collections are a relatively quick and

inexpensive route for discovering new genes (Bourdon

et al., 2002; Rogaev et al., 1995), confirm coding regions in

genomic sequence (Adams et al., 1991), create opportunities

to elucidate phylogenetic relationships (Nishiyama et al.,

2003), facilitate the construction of genome maps (Paterson

et al., 2000), can sometimes be interpreted directly for tran-

scriptome activity (Ewing et al., 1999; Ogihara et al., 2003;

Ronning et al., 2003), and provide the basis for development

of expression arrays also known as DNA chips (Chen et al.,

1998; DeRisi et al., 1996; Shalon et al., 1996; Shena et al.,

1995). In addition, high-throughput technology and EST

sequencing projects can result in identification of significant

portions of an organism’s gene content and thus can serve

as a foundation for initiating genome sequencing projects

(van der Hoeven et al., 2002). Currently there are nearly

20 million ESTs in the NCBI public collection, more than

4 million of which derive from plants (http://www.ncbi.nlm.

nih.gov/dbEST/). With many large-scale EST sequencing

projects in progress and new projects being initiated, the

number of ESTs in the public domain will continue to

increase in the coming years. The sheer volume of this

sequence data has and will continue to require new com-

puter-based tools for systematic collection, organization,

storage, access, analysis, and visualization of this data. Not

surprisingly, despite the relative youth of this field, an

impressive diversity of bioinformatics resources exists for

these purposes. Table 1 lists a portion of these resources; a

more comprehensive review can be found in Vision and

McLysaght (2003).

As sequence and annotation data continue to accumulate,

public databases for genomic analysis will become

increasingly valuable to the plant science community. The

Arabidopsis Information Resource (TAIR; http://www.

arabidopsis.org/home.html), the Salk Institute Genomic

Analysis Laboratory (SIGnAL; http://signal.salk.edu/), the

Solanaceae Genomics Network (SGN; http://sgn.

cornell.edu/), and GRAMENE (http://www.gramene.org/)

serve well as examples of these on-line resources. In addition

to a variety of analysis tools and a wealth of microarray data,

TAIR contains sequence data for the entire Arabidopsis

genome that is easily accessible via query and FTP tools. All

120 Mb of this sequence data can also be obtained from the

SIGnAL database, as can sequence data for more than

11 000 full-length cDNA sequences, and more than 10 000

publicly available (full-length) ORF clones. SIGnAL also

curates a mapped collection of more than 300 000 sequenced

indexed T-DNA insertion mutants, most of which are pub-

licly available through the Arabidopsis Biological Resource

Center (ARBC; http://www.biosci.ohio-state.edu/�plantbio/

Facilities/abrc/abrchome.htm). SGN is dedicated to the bio-

logy of Solanaceae species, including tomato, potato,

tobacco, eggplant, pepper, and petunia. This database

contains curated sequence data derived from nearly

300 000 ESTs, extensive mapping data for the tomato

genome, in addition to mapping data for the genomes of

potato and eggplant. GRAMENE is a curated, open-source

database dedicated to the biology of grasses, including rice,

maize, Sorghum, barley, and wheat. The primary objective

of GRAMENE is to facilitate cross-species homology rela-

tionships (via comparative genome analysis) among mono-

cotyledonous species. In addition to sequence and mapping

data, GRAMENE also contains a variety of analysis tools, an

extensive Ontology database, a QTL database, and a data-

base for mutant genes in rice.

With databases such as these, and advances in computa-

tional molecular biology and biostatistics, it is possible to

mine and analyze large EST datasets efficiently and exhaust-

ively (i.e. digital expression profiling; Ewing et al., 1999;

Ogihara et al., 2003; Ronning et al., 2003). Particularly

important is the fact that this type of data mining can be

used to corroborate and extend upon expression data

obtained from microarray experiments. Using such a



Table 1 Online resources for plant functional genomics

RESOURCE URL

Genomics Software

Acuity Software http://www.axon.com/gn_Acuity.html
EMBL Bioinformatics Software http://www.ebi.ac.uk
GeneSpring Software http://www.silicongenetics.com/cgi/SiG.cgi/index.smf
ImaGene Software http://www.biodiscovery.com/
MIT Bioinformatics Software http://www.broad.mit.edu/cancer/software/software.html
NCGR Bioinformatics Software http://www.ncgr.org
Perl Programming Language http://www.perl.com
Rosetta Resolver Software http://www.rosettabio.com/
R Programming Language http://www.bioconductor.org
Stanford Bioinformatics Software http://genome-www5.stanford.edu
TIGR Bioinformatics Software http://www.tigr.org/software/tm4
Various Bioinformatics Software http://bioinformatics.org

Genomics Databases

Arizona Genomics Institute http://genome.arizona.edu/
ArrayExpress http://www.ebi.ac.uk/arrayexpress/
dbEST http://www.ncbi.nlm.nih.gov/dbEST/index.html
European Bioinformatics Institute http://www.ebi.ac.uk/
GENBANK http://www.ncbi.nih.gov/Genbank
Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/
Genomics of Plant Cell Walls http://cellwall.genomics.purdue.edu
Genomics of Plant Membrane Proteins http://aramemnon.botanik.uni-koeln.de/
Lower Plants (various) http://genomics.nybg.org/lowerplantgenomicssummary.htm
Net Center for Plant Genomics http://plantgenome.sdsc.edu/dw_NCPG.html
Plants (various) http://www.plantgdb.org
Salk Institute Genomic Analysis Laboratory http://signal.salk.edu/
The Arabidopsis Information Resource (TAIR) http://www.arabidopsis.org
The Arabidopsis Ionomics Database http://hort.agriculture.purdue.edu/ionomics/database.asp
The Institute for Genomics Research (TIGR) http://www.tigr.org
The Plant Genome Mapping Laboratory http://www.plantgenome.uga.edu/links.htm
Barley http://barleyworld.org/
Cotton http://cottondb.tamu.edu
Cyanobacteria http://www.kazusa.or.jp/cyano/cyano.html
Grains http://www.gramene.org
Grape http://www.vitaceae.org
Loblolly Pine http://pine.ccgb.umn.edu
Maize http://www.maizegdb.org
Medicago http://medicago.org/genome
Millet http://jic-bioinfo.bbsrc.ac.uk/cereals/millet.html
Potato http://www.potatogenome.org/nsf3
Rice http://rgp.dna.affrc.go.jp
Solanaceae http://sgn.cornell.edu
Sorghum http://www.fungen.org/Sorghum.htm
Soybean http://www.soybeangenome.org
Wheat, Oat http://wheat.pw.usda.gov/index.shtml

cDNA Microarrays

Arabidopsis http://info.med.yale.edu/wmkeck/dna_arrays.htm
Maize http://www.maizegdb.org/documentation/mgdp/microarray
Potato http://www.tigr.org/tdb/potato/microarray2.shtml
Tomato http://bti.cornell.edu/CGEP/CGEP.html

Oligonucleotide Microarrays

Arabidopsis http://info.med.yale.edu/wmkeck/dna_arrays.htm
Arabidopsis http://www.mwg-biotech.com/html/d_diagnosis/d_overview.shtml
Arabidopsis, Barley, Custom Oligoarrays http://www.affymetrix.com/products/arrays
Arabidopsis, Grape, Medicago, Peach http://oligos.qiagen.com/arrays/omad.php
Arabidopsis, Rice, Custom Oligoarrays http://www.chem.agilent.com

Nomenclature, Standards, and Formats

Gene Ontology Consortium http://www.geneontology.org
MAGE Standards http://www.mged.org/Workgroups/MAGE/mage.html
MIAME Standards http://www.mged.org/Workgroups/MIAME/miame.html



strategy we have analyzed a tomato EST dataset represent-

ing 152 635 ESTS to gain insights into statistically significant

changes in differential expression among diverse plant

tissues representing a range of developmental programs

and biological responses (Fei et al., 2004). A website

presenting this data and a number of online analysis tools

can be viewed at http://ted.bti.cornell.edu/.

By clustering genes according to their relative abundance

in the various EST libraries, expression patterns of genes

across various tissues were generated and genes with

similar patterns were grouped. In addition, tissues them-

selves were clustered for relatedness based on relative gene

expression as a means of validating the integrity of the EST

data as representative of relative gene expression. EST

collections from other species (e.g. Arabidopsis) were also

characterized to facilitate cross-species comparisons where

possible (http://ted.bti.cornell.edu/). With the rapid expan-

sion of available EST data (e.g. http://www.arabidopsis.org;

http://www.gramene.org; http://www.medicago.org; http://

www.sgn.cornell.edu; http://www.tigr.org), opportunities

for digital analysis of gene expression will continue to

expand.

Expressed sequence tag collections also have limitations

when being used for genomic analysis from the perspec-

tives of accurate representation of genome content, gene

sequence, and as windows into transcriptome activity. The

fact that ESTs reflect actively transcribed genes makes it

difficult to use EST sequencing alone as a means of

capturing the majority of an organism’s gene content.

Additionally, and of great importance, is the fact that a

fraction of this sequence data is erroneous. Some of these

sequence errors derive from the imperfect nature of the

enzymes used to generate cDNA libraries and sequence data

(Bebenek et al., 1989; Echols and Goodman, 1991; Roberts

et al., 1989). At present these sequence errors cannot be

completely avoided, but multiple sequence reads through

the same gene makes it possible to minimize this type of

artifact. EST collections, even when not normalized or

subtracted, are not perfectly representative of the mRNA

populations they originate from. For example, low-abun-

dance transcripts are unlikely to be represented fully in all

EST collections. Misrepresentation can also originate from

transcripts with atypical sequence features (e.g. extremely

long transcripts, RNA secondary structures) that impair

reverse transcription and/or subsequent cDNA cloning. A

third source of error in EST collections can originate during

processing of sequence data. This type of sequence error

derives from the imperfect technology and algorithms used

for base calling, sequence annotation, and contig assembly.

Finally, EST sequence data are also prone to human errors

during storage, handling, replication, and management of

EST collections. Consequently, re-sequencing ESTs of inter-

est is an important means of validation prior to further

characterization. Despite these limitations, it has been

shown that EST databases can be a valid and reliable source

of gene expression data (Ewing et al., 1999; Ogihara et al.,

2003; Ronning et al., 2003).

Gene expression profiling

A variety of methods have been developed for quantifying

mRNA abundance in plant tissues. Although the established

and reliable method of RNA gel-blot analysis can be quite

sensitive and allows for the accurate quantification of spe-

cific transcripts (Hauser et al., 1997), this method is not

readily adapted to genome-scale analysis. Differential dis-

play (Liang and Pardee, 1992; Welsh et al., 1992) uses low-

stringency PCR, a combinatorial primer set, and gel elec-

trophoresis to amplify and visualize larger populations of

cDNAs representing mRNA populations of interest. Differ-

ential display has important advantages when compared

with scale-limited approaches such as RNA-blot analysis

(e.g. minimal mRNA is required, parallel profiling of mRNA

populations is feasible), yet this technique suffers from

output that is not quantitative and positives are often diffi-

cult to clone and confirm (Debouck, 1995; Ding and Cantor,

2004). More recently the principles of AFLP� have been ap-

plied to cDNA templates (i.e. cDNA-AFLP; Bachem et al.,

1996, 1998) and this approach has been used to identify

differentially expressed genes involved in a variety of plant

processes (Bachem et al., 2001; Dellaqi et al., 2000; Durrant

et al., 2000; Qin et al., 2000). This technique offers several

advantages over more traditional approaches. Of particular

importance is the fact that poorly characterized genomes

can be investigated in a high-throughput manner. Because

the stringency of cDNA-AFLP PCR reactions is quite high

(which is not the case with differential display) the fidelity of

the cDNA-AFLP system allows much greater confidence in

acquired data and differences in the intensities of amplified

products can be informative (Bachem et al., 1996). In addi-

tion, this technique allows a wide variety of tissue types,

developmental stages, or time points to be compared con-

currently. As with the other profiling methods described

here, the sensitivity of cDNA-AFLP is only limited by the

ability of cDNA libraries to capture low-abundance tran-

scripts. Sequencing of cDNA libraries is a more direct and

comprehensive approach to gene expression profiling

(Adams et al., 1991; Okubo et al., 1992), but this method

requires substantial resources for cloning and sequencing,

and is less sensitive to low-abundance transcripts as

mentioned above. Serial analysis of gene expression (i.e.

SAGE; Velculescu et al., 1995) is an elegant technique that

combines differential display and cDNA sequencing

approaches, and it has the advantage of being quantita-

tive. Unfortunately, SAGE is laborious, requires an exten-

sive foundation of sequence information, and suffers from

some of the same concerns regarding low-abundance

transcripts.



Microarrays take advantage of existing EST collections

and genome sequence data (and are thus limited by the

availability of the same), robotic instrumentation for mini-

aturization, and fluorescent dyes for simultaneously detect-

ing nucleic acid abundance in RNA populations derived from

multiple samples. Populations of fluorescent cDNA targets

(following the definition of target and probe adopted in the

The Chipping Forecast, 1999) representing the mRNA pop-

ulations of interest are queried via hybridization with a large

number of probes that have been immobilized on a suitable

substrate (Chen et al., 1998; DeRisi et al., 1996; Shalon et al.,

1996; Shena et al., 1995). The arrays themselves are com-

posed of collections of DNA sequences (typically PCR

products, cDNAs, or oligonucleotides) that have been prin-

ted as a microscopic grid of catalogued features by a high-

fidelity robotic system. This technique for gene expression

profiling has important advantages when compared with

RNA-blot analysis, cDNA sequencing, differential display,

AFLP analysis, and SAGE. Most importantly, it can measure

tens-of-thousands of different mRNA transcripts in parallel,

it is semi-quantitative, and it is sensitive to low-abundance

transcripts that are represented on a given array. This last

point is worth emphasizing in that microarrays are inher-

ently limited to their contained sequences, while so-called

‘open architecture’ systems such as differential display and

SAGE can capture information for any sequence that is

expressed at a level sufficiently above the level of detection.

In those instances where complete genome sequence is

available, microarrays make it possible to monitor the

expression of an entire genome in a single experiment (Gill

et al., 2002; Jiang et al., 2001; Wang et al., 2003). Despite this

potential, predominant uses of microarrays facilitate analy-

sis of significant, yet limited, subsets of the target genome.

When used for time-course analyses, analyses of transcrip-

tome alterations caused by genetic lesions, or comparison

of transcript accumulation in similar tissues from closely

related species (Figure 1), the potential of microarrays for

gene expression profiling is not only enormous, but is also

just beginning to be realized.

Microarray technology

Two different types of microarrays have become common-

place: cDNA microarrays and oligonucleotide microarrays.

Both have notable and distinct advantages. For example,

cDNA arrays can be prepared directly from existing cDNA

libraries, a large number of which are in the public domain.

Thus, fabrication of cDNA arrays is only dependent upon

availability of ordered clone collections, and appropriate

arraying and scanning instrumentation (Clark et al., 1999;

Drmanac and Drmanac, 1999; Eisen and Brown, 1999). Once

a set of corresponding PCR products has been generated,

arrays can be created in multiple versions containing the

entire set of available sequences or subsets of sequences

Figure 1. Comparison of gene expression in tomato and pepper fruit using a

cDNA microarray prepared from tomato EST clones.

(a) The TOM1 array, which contains 12 899 features derived from the

tomato genome, was fabricated as described in the text. In this experiment

RNA was extracted from pericarp tissue representing equivalent stages of

fruit development in tomato and pepper, i.e. breaker stage. After reverse

transcription the two resultant cDNA populations were labeled with

different fluorescent dyes (Cy3TM and Cy5TM, respectively), co-hybridized

to the TOM1 array, and visualized using a microarray scanner. Raw

fluorescence data was converted to false-color expression data as

described in the text. Array features that appear yellow imply similar

expression levels in the two mRNA populations. Array features that appear

red imply increased transcript abundance in the tomato mRNA population

and/or divergence of the corresponding pepper mRNA sequence. Array

features that appear green imply increased transcript abundance in the

pepper mRNA population when compared with tomato. The white square

encircles a single sub-grid (420 cDNA features) that is enlarged and shown

in (b).



resulting in smaller ‘boutique’ arrays suitable for specific

research applications (e.g. regulatory-, pathway-, stage- or

response-specific arrays; Jiao et al., 2003). Smaller ‘bou-

tique’ arrays are also useful for reducing a statistical prob-

lem of scale (i.e. large numbers of features and low number

of replications common in microarray experiments). Here, a

large array might be used to identify differentially expressed

genes of interest, which could then be re-arrayed as a

smaller array and used in subsequent experiments. One

benefit of this approach is that it can free up resources that

can be used to increase experimental replication and there-

by increase precision. Another advantage of cDNA arrays is

that they can be used in ‘two-color’ co-hybridization experi-

ments that allow direct comparisons of transcript abun-

dance in two mRNA populations of interest. Although this

strategy generates comparative expression ratios instead of

measuring absolute expression levels, it is effective for

comparative expression profiling and reduces experimental

variation that arises in microarray data collected from

different chips (Aharoni and Vorst, 2001).

Like cDNA arrays, oligonucleotides can be printed using

robotic instrumentation and (once appropriate oligonucleo-

tides have been synthesized) sub-arrays for specific research

applications can be fabricated easily. The main limitations in

development of oligonucleotide arrays are the costs asso-

ciated with sequence selection and oligonucleotide synthe-

sis. As these costs continue to decline oligo-based arrays are

likely to become more predominant in the near future

because they offer a number of important advantages over

cDNA arrays. One such advantage is the fact that oligo-

based arrays can be fabricated using microfluidic technol-

ogy, which utilizes light to direct the synthesis of short

oligonucleotides onto a suitable matrix (i.e. photolithogra-

phy; Fodor et al., 1991, 1993; Pease et al., 1994). Photoli-

thography is particularly useful because it allows for the

fabrication of extremely high-density arrays (>300 000 ele-

ments/1.28 cm2, Lipshutz et al., 1999). Another important

advantage is that the probes in an oligonucleotide array are

designed to represent unique gene sequences such that

cross-hybridization between related gene sequences

(e.g. genes belonging to a gene family or genes with

common functional domains) is minimized to a degree

dependent upon the completeness of available sequence

information. Cross-hybridization between homologous se-

quences continues to be problematic when using cDNA

arrays. Furthermore, the array elements in an oligonucleo-

tide array are typically designed to have uniform length,

uniform melting temperatures, and to be of uniform con-

centrations, which can significantly reduce experimental

variation and thereby increase statistical power and preci-

sion. Thus, oligonucleotide arrays should be considered

seriously when initiating new microarray projects and we

direct the reader towards the works of Aharoni and Vorst

(2001), Bolstad et al. (2003), Kane et al. (2000), Kuo et al.

(2002), Lockhart et al. (1996), Wodicka et al. (1997), Yuen

et al. (2002), and Mah et al. (2004). The primary dis-

advantage of oligo-based arrays is that oligonucleotide sets

can be very expensive because of the extensive sequence

data and computational input required for designing

gene-specific oligonucleotide probes. Currently, a single

oligonucleotide chip is often three to five times more

expensive than the cost of a single cDNA chip (‘printed’

cDNA arrays typically cost between $100 and $200 per chip).

A common limitation of all array approaches is the

requirement of significant RNA for the preparation of

fluorescently labeled targets. For this and other reasons,

methods for generating sufficient signal from extremely

small RNA populations (e.g. single cells) have and will

continue to be investigated (Brandt et al., 2002; Chen et al.,

1998; Feldmann et al., 2002; Luo et al., 1999; Marshall and

Hodgson, 1998; Nakazono et al., 2003; Phillips and Eber-

wine, 1996; Thorp, 1998).

Fabrication of the tomato TOM1 microarray

In addition to the descriptions below, the protocols we use

regularly for these purposes are presented in a step-by-step

fashion in the PROTOCOL section of the Tomato Expression

Database (http://ted.bti.cornell.edu/microarray/interface/

protocol.html).

The EST libraries utilized for fabrication of our TOM1

cDNA microarray have been described previously (van der

Hoeven et al., 2002). A total of 12 899 EST clones represent-

ing 8500 independent tomato genes were inoculated into

384-well plates containing LB (containing 100 lg ml1 amp-

icilin) and incubated for 24 h at 37�C followed by 12-h

incubation at 22�C. The resultant cultures were used to

inoculate duplicate PCR reactions, which contained 10 mM

Tris (pH 9.2), 25 mM KCl, 3.5 mM MgCl2, 0.5 mM dATP,

0.5 mM dGTP, 0.5 mM dCTP, 0.5 mM dUTP, 0.04 ul Taq

polymerase, 200 nM T3 primer, and 200 nM T7 primer.

Inoculation was achieved using a sterile 384-pin replicator

(catalog no. 250393; Nalge Nunc Inc., NY, USA) and the

inoculation transfer step was preformed twice such that

approximately 2 ll of each culture was transferred to each

corresponding PCR reaction. PCR reactions were incubated

at 95�C for 2 min, followed by 39 amplification cycles (94�C
for 20 sec, then 52�C for 20 sec, then 72�C for 1.5 min), and

then incubated at 72�C for 10 min. Products from duplicate

15 ul PCR reactions were combined and transferred to 384-

well filter plates (catalog no. S384PCR10; Millipore Inc.,

Billerica, MA, USA) using a Genesis RSP 200 Liquid Handler

(TECAN Inc., San Jose, NC, USA). Salts, primers, free

nucleotides, and other contaminates originating from the

inoculate were removed via vacuum filtration (12–15 mbar

for 5 min). PCR products were subsequently extracted from

the filter matrix in 20 ll of H2O and transferred to 384-well

spotting plates (catalog no. X6003; Genetix Inc., Boston, MA,



USA) using the liquid handler. Purified products were then

dehydrated under vacuum, re-suspended in 12 ll of spotting

buffer (3 · SSC, 1.5 M betaine), and printed onto glass slides

coated with c-amino-propyl-silane (25.3 · 75.5 mm, Ultra-

GAPS; Corning Inc., Corning, NY, USA) using a MicroGrid

Pro arrayer (BioRobotics Inc., Boston, MA, USA) with 32

MicroSpot2500 printing pins. Temperature and humidity

inside the arrayer were maintained at 18–21�C and 35–45%

RH, respectively. Dwell time, spots per visit, pin wash time,

and pin dry time were set at 1 sec, 27 spots, 7 sec, and

10 sec, respectively. cDNA was fixed to the modified glass

slides by treatment with 300 mJ of UV irradiation followed

by a 2-h incubation at 85�C. Array fabrication was completed

with a 2-min wash in 0.2% SDS, three rinses in Milli-Q� water

(Millipore Inc.), and a final rinse in 90% EtOH. EtOH was

removed immediately via centrifugation (2 min at 500 rpm)

and resulting microarrays were stored in a dust-free plexi-

glass chamber (approximately 21�C, 0% RH).

Experimental design

Figure 2(a) is a schematic overview for expression profiling

using cDNA microarrays. A variety of experimental designs

are possible for microarray analysis, most of which have

been discussed in detail (Churchill, 2002; Dobbin and Simon,

2002; Dobbin et al., 2003; Kerr and Churchill, 2001; Yang and

Speed, 2002a). For profiling gene expression during time-

course studies or analyses of developmental transitions we

have found the direct-sequential linear design and the

direct-sequential loop design (Kerr and Churchill, 2001; Yang

and Speed, 2002a) to be well suited for this purpose. For

example, because expression profiles obtained with these

designs derive from pair-wise comparisons of adjacent time

points, direct comparison of expression differences between

time points is possible. Such comparisons can only be made

indirectly when designs utilizing a common reference are

employed (Figure 2b), which may make subtle differences

from one time point to another difficult to detect. Equally

important, the direct-sequential loop design increases pre-

cision for some of the pair-wise comparisons in the time

course, which reduces the mean variance for data

collected in this way (Yang and Speed, 2003). More recently,

experimental designs for microarray analyses have begun to

incorporate interspecies comparisons using arrays that

originate from one of the genomes being investigated

(Dong et al., 2001; Horvath et al., 2003; Ventelon-Debout

et al., 2003; S. Moore and J. Giovannoni, BTI, Ithaca, NY,

USA, unpublished data). Toward this objective, comparison

of closely related species is most informative because arti-

facts stemming from sequence divergence are minimized.

As an example of this type of interspecies comparison we

have co-hybridized labeled cDNA populations derived from

pepper pericarp (breaker-stage fruit) and tomato pericarp

(breaker-stage fruit) to our TOM1 microarray (Figure 1).

Pepper genes showing increased transcript abundance in

this experiment (compared with expression in equivalent

Figure 2. Overview of experimental design for

gene expression profiling using cDNA microar-

rays.

(a) General scheme for gene expression profiling

using cDNA microarrays.

(b) Three different experimental designs for time-

course experiments utilizing microarrays. Abbre-

viations: T1…. Tn, time-points 1 through n.



tomato tissue) are of particular interest because this result

cannot be explained by differential hybridization because of

sequence divergence (Table 2).

Verification of microarray data can be accomplished in a

variety of ways, including RNA-blot analysis, RT PCR, real-

time PCR, and/or comparison with EST expression databas-

es (e.g. http://ted.bti.cornell.edu/). The latter being the only

approach that has potential for genome-scale verification.

As an example of this approach we have used the tomato

expression database to corroborate some of the results

summarized in Figure 1 and Table 2. The comparative

profiling experiment described above identifies a number

of genes that have been previously shown to be highly

expressed in tomato pericarp during ripening, including

genes encoding ACC oxidase1, pectin esterase, polygalac-

turonase 2A, pectate lyase, histidine decarboxylase, and acid

invertase. EST data in the Tomato Expression Database

(http://ted.bti.cornell.edu) again confirms that all six of these

genes are abundant in breaker-stage pericarp tissue (esti-

mated 0.17–1.33% of breaker mRNA based on digital

expression data). In addition, 26 genes were identified that

(i) are highly expressed in the breaker-stage library of the

Tomato Expression Database (i.e. represented by greater

than 25 ESTs corresponding to >0.17% of the mRNA from

this tissue) and (ii) exist on the TOM1 microarray. Twenty-

four of these 26 genes (92%) sorted into the top 50% of

fluorescent signal intensities when assayed using the TOM1

microarray (data not shown). The continued expansion of

EST collections will only increase the feasibility of this

approach for large-scale verification of transcriptome data.

Differential expression of genes identified via comparat-

ive expression profiling can also be used in conjunction with

large-scale proteome analysis (Rose et al., this issue) to

dissect regulatory processes. Comparisons that combine

expression and proteome profiling should allow one to

distinguish transcriptional versus post-transcriptional regu-

lation. To date, however, the potential for using comparative

genomics/proteomics for this type of molecular analysis in

plants remains largely untapped.

Sufficient replication is an important issue in meaningful

transcriptome profiling and decisions in this regard should

be based on (i) the extent of biological and technical

variation in one’s experimental system, (ii) the experimen-

tal question, (iii) desired resolution, (iv) available

resources, (v) available time, and (vi) opportunities for

downstream validation. In most cases biological replica-

tion is superior to technical replication, and technical

replication is far better than none (Callow et al., 2000;

Churchill, 2002; Kerr et al., 2000a; Lee et al., 2000). Con-

sistent with the proposal of Lee et al. (2000), for time-

course experiments we suggest a minimum of three to

four biological replicates for each time point with a dye-

swap technical replicate for each biological replicate

(Cochran and Cox, 1992; Kerr et al., 2000a). This approach

minimizes dye-specific artifacts and makes statistical ana-

lyses possible (the same is true for proteome analysis –

see Rose et al., this issue). Dye-swap replicates, which

involve repeating the hybridization conditions with dye

reversal in the second hybridization, are useful for redu-

cing systematic dye bias (Tseng et al., 2001; Yang et al.,

2001). Presumably this dye bias derives from differences in

mean brightness and background noise, dye-specific

incorporation efficiency, different extinction coefficients,

differences in quantum fluorescence yield, and other

physical properties of the dyes (e.g. molecular size,

sensitivity to light and heat, relative half-life). For experi-

ments comparing only two or three different samples (e.g.

wild-type versus mutant), we suggest a minimum of three

to six biological replicates to make statistical analysis

possible while minimizing resource depletion. Dye-swap

replicates should be used in this situation as well. It is also

important to point out that we are not implying that the

‘law of diminishing returns’ has firmly set in after three to

six replicates. In some cases, particularly scenarios where

more precision is required or greater systemic variance

has been documented, greater replication (i.e. more than

three to six replicates) is likely to be worth the additional

resource investment. Thus, three to six replicates should

be considered only as an initial guideline during experi-

mental design. Although biological replication is most

desirable, in some cases such replication is not possible. In

these instances, consistent with the hypothesis of Peng

et al. (2003), we continue to presume that a single RNA

extraction from a homogenous pool of replicate tissue is

superior to a single RNA extraction from an individual

tissue sample. This being said it is important to point out

Table 2 Comparative expression profiling used to identify loci that
are expressed differently in similar tissues from closely related
species

10·b 5·c

Loci expressed in tomato pericarpa 2364 3596
Loci expressed in pepper pericarpa 2370 3680
Loci expressed in both speciesd 2023 2973

P < 0.001e P < 0.01e

Loci with different expression levelsf 188 974
Loci with increased expression in pepper 95 550
Loci with decreased expression in pepper 93 424

aOuter pericarp tissue from breaker-stage fruit.
bAll loci with normalized fluorescence signal greater than 10-fold
background.
cAll loci with normalized fluorescence signal greater than fivefold
background.
dThe subset of loci that are expressed in both tomato and pepper
pericarp (breaker-stage fruit).
et-Test with FDR correction for multiple testing (Benjamini and
Hochberg, 1995).
fLoci were identified with the GeneSpring� software (v6.1, Silicon-
Genetics).



that direct comparisons to test this hypothesis have not

been reported in the literature. It should also be noted that

replicate measurements from a pool of tissue only pro-

vides information about variability stemming from meas-

urement error, and provides no information about

variability that stems from population heterogeneity.

Labeling of cDNA targets and microarray hybridization

Purity and integrity of RNA can influence cDNA synthesis,

incorporation of fluorescent dyes, dye stability, and probe-

target hybridization. In addition, impurities such as genomic

DNA, cellular proteins, lipids, and carbohydrates can lead to

non-specific binding of fluorescent cDNAs to array elements

and chip surfaces (Duggan et al., 1999).

Thus, methods for RNA extraction are an important

consideration for microarray studies and optimized proto-

cols can differ notably for different types of tissues, experi-

mental designs, and/or experimental questions. For

example, some experimental questions require protocols

optimized for high throughput, others require protocols

optimized for very low-abundance transcripts, while others

require protocols optimized for RNA yield. A variety of

techniques have been used successfully for purifying RNA

from plant tissues prior to use in microarray experiments

(Fowler and Thomashow, 2002; Monte and Somerville, 2003;

Moseyko et al., 2002; Reymond et al., 2000; Schaffer et al.,

2001), including phenol-based extraction methods, guani-

dine thiocyanate, TRIzol�, silica-based RNA extraction (e.g.

RNeasy columns; Qiagen Inc., Valencia, CA, USA), and

methods that use proprietary extraction cocktails such as

RNAwiz (Ambion, Austin, TX, USA). Protocols developed

specifically for quantitative extraction of low-abundance

transcripts (Hauser et al., 1997) are also likely to work for

many plant tissues. Our work frequently employs a modified

version of the protocol reported by Chang et al. (1993),

which was designed for use with pine tissues that are rich in

carbohydrates and secondary metabolites. Modifications

include purification of total RNA from 3.5 g of frozen tissue

powder using 17 ml of extraction buffer, additional chloro-

form:IAA extraction steps prior to the LiCl precipitation, and

elimination of the chloroform:IAA extraction steps after the

LiCl precipitation. When mRNA is desired, the EtOH-washed

total RNA is brought to 0.75 lg ll)1 with 10 mM Tris-Cl (pH

7.5) and the mRNA is purified with oligo d(T)25 DynabeadsTM

(catalog no. 610.05; Dynal Inc., Lake Success, NY, USA), as

per the manufacturer’s protocol. We find that fluorescent

cDNA targets prepared from mRNA usually result in reduced

background fluorescence and stronger more consistent

signal across the array. Regardless of the extraction protocol

used for RNA isolation, purity and integrity should always be

assayed prior to cDNA synthesis and cDNA labeling. RNA

purity can be assessed via absorbance measurements at 230,

260, and 280 nm. The 260:280 ratio (preferably after correc-

tion for background absorbance) is indicative of protein

contamination and the 260:230 ratio (preferably after cor-

rection for background absorbance) is indicative of contam-

ination by carbohydrates or other metabolites. In both cases,

ratios below 1.9 can be problematic for cDNA synthesis/

labeling and ratios greater than 2.1 are optimal. RNA

integrity can be assayed using formaldehyde denaturing-

gel electrophoresis or the Agilent 2100 Bioanalyzer system

(catalog no. G2940CA; Agilent Technologies Inc., Palo Alto,

CA, USA).

The two most common methods for labeling cDNA

targets are direct incorporation of fluorescent nucleotides

during reverse transcription, and a two-step incorporation

method often referred to as indirect incorporation or amino-

allyl labeling. Direct incorporation was initially the method

of choice, but persistent problems with this method have

been reported (Hegde et al., 2000; Payton et al., 2003; Smyth

et al., 2002; Yang et al., 2002b). For example, the rate of

incorporation for nucleotides labeled with cyanine3 (Cy3TM)

and cyanine5 (Cy5TM) is typically low, can be influenced by

cDNA sequence, and can have negative effects on cDNA

yield – all leading to inaccurate representations of expres-

sion. Indirect incorporation is the emerging method of

choice for labeling cDNA prior to microarray hybridization

(DeRisi et al., 1996, 1997; Shena et al., 1995). This method

utilizes dUTP nucleotides that are modified with an amino-

allyl group [e.g. 5-(3-aminoallyl)-2¢-dUTP]. After incorpor-

ation of these nucleotides during cDNA synthesis, the

modified cDNA is labeled using an N-hydroxy-succinimide

ester form of Cy3TM or Cy5TM (catalog nos PA23001 and

PA25001, respectively; Amersham Biosciences Corp., Piscat-

away, NJ, USA) and a carbonate-based coupling buffer. This

approach circumvents low incorporation rates and incor-

poration bias that are likely due to the size of the dye

molecules.

We have had good results with a commercially available

version of the amino-allyl labeling method for preparation of

fluorescent cDNA targets (catalog no. L1014-02; Super-

ScriptTM Indirect cDNA Labeling System, Invitrogen Corp.,

Carlsbad, CA, USA). This labeling system uses two types of

modified nucleotides, one of which contains an amino-allyl

modification and one of which contains an amino-hexyl

modification. In theory, this approach should increase the

number of available nucleotides that can be coupled to dye

molecules, thereby increasing specific activity and enabling

greater sensitivity. Some protocol modifications we use

for this cDNA labeling method are: (i) overnight precipitation

of the transcribed cDNAs, (ii) an additional wash step during

the cDNA purification, (iii) incubation of the 2X coupling

buffer at 37�C to ensure that reagent precipitates are com-

pletely dissolved, (iv) incubation of the coupling buffer/

cDNA suspension at 50�C for 10 min followed by thorough

mixing to ensure the cDNA pellet is completely re-suspen-

ded prior to the labeling reaction, (v) two additional wash



steps during purification of the labeled cDNA, and (vi)

elution of labeled cDNA with 63 ll of nuclease-free H2O.

Success of the cDNA synthesis and dye labeling reactions

should always be assessed spectrophotometrically. Fre-

quency of incorporation should also be calculated (fre-

quency of incorporation ¼ pmol cDNA/pmol coupled dye).

We have found that optimal fluorescent targets contain

>2500 pmol of cDNA per reaction, >125 pmol of incorpor-

ated dye per reaction, and <40 nucleotides/dye molecule.

Assuming the cDNA synthesis and labeling reactions

are successful, 50 pmol of Cy3TM (coupled to cDNA) is

combined with an equivalent quantity of Cy5TM (50 pmol

of Cy5TM coupled to cDNA) and evaporated to dryness in a

roto-evaporator set to 45�C. The combined dried cDNA

targets are then suspended in 70 ll of hybridization

solution. For arrays printed on Corning’s UltraGAPSTM

chips, we have found that Corning’s Universal Hybridiza-

tion Solution (catalog no. 40090; Corning Inc.) results in

high fluorescence intensity that is consistent across the

array and low background fluorescence. After re-suspen-

sion in 70 ll of hybridization solution, the labeled cDNA is

incubated at 95�C for 5 min, and 65 ll is applied to an

array that has been pre-hybridized for 45 min (43�C) in

5 · SSC containing 0.1% SDS and 1% BSA (Hegde et al.,

2000), and covered with a clean glass LifterSlip (50 mm,

catalog no. 22X50I-2-4711; Erie Scientific, Portsmouth, NH,

USA). Hybridization is conducted in Corning hybridization

chambers (catalog no. 2551; Corning Inc.), at 43�C, for 12–

16 h in the absence of light. Three post-hybridization

washes are conducted in Coplin jars, including a wash in

55 ml of 1 · SSC/0.2% SDS (43�C, 10 min), followed by a

wash in 55 ml of 0.1 · SSC/0.2% SDS (22�C, 10 min),

followed by a wash in 55 ml of 0.1 · SSC (22�C, 10 min).

Immediately after the final wash step the arrays are dried

via centrifugation (440 g for 1 min) and stored in the dark

until scanning.

Acquisition, transformation, and processing of microarray

data

Figure 3 shows a schematic representing the primary steps

in an analysis pipeline for cDNA microarrays. We scan our

arrays immediately after they are washed/dried using a two-

channel confocal microarray scanner (ScanArray5000; GSI

Lumonics, Billerica, MA, USA) and the associated ScanArray

software (v3.1, Packard BioChip Technologies, Boston, MA,

USA). After laser focusing and balancing of the two chan-

nels, scans are conducted at a resolution of 10 lm with the

laser power typically set between 70 and 85% of maximum

and the photomultiplier tube typically set at 80% of maxi-

mum. Excitation/emission settings are 543/570 lm and 633/

670 lm for the Cy3TM and Cy5TM fluors, respectively. Raw

fluorescence image data is typically saved as .tif files, which

are subsequently converted to numerical signal data (.txt

files and/or .xml files) using ImaGene software (v5.6, Bio-

Discovery Inc., El Segundo, CA, USA). To facilitate data

transfer between investigators raw microarray data should

be deposited in public repositories designed for expression

data (preferably in the form of .tif files, .txt files, and/or .xml

files); the importance of timely public release of microarray

data cannot be overemphasized.

Processing of microarray data typically involves the

conversion of fluorescence image files to numerical data

files, data filtration, log transformation, data normalization,

statistical analyses to identify ‘high-quality’ data, more data

filtration, data clustering, and data visualization. Fortunately,

a variety of bioinformatics software packages that make

processing microarray data relatively efficient have become

available. Websites for acquiring some of this software are

shown in Table 1. Unfortunately, without being used in

combination with other types of software, none of these

bioinformatics packages are capable of rapidly and com-

pletely processing all of the different types of microarray

data now being generated. For these and other reasons it is

best to invest the time required to create a data-processing

pipeline that is most suitable for one’s own data set

Filter Data: Visually Inspect Array Images, Omit “Problem” Arrays

Filter Data: Omit Flagged Data, Blanks, Controls, Low/High Signals

Calculate Statistics: Count, Mean, Std Error, P-value, CV

Filter Data:  Omit Highly Variable Data

Repeat for Each Condition/Genotype/Time Point, Compile Data

Array Scanner: Obtain Fluorescence Data

Image Analysis Software: Convert Image Data to Numerical Data

Re-organize Processed Data 
Using Clustering Algorithms 

Identify Differentially Expressed
Loci via T-Test, ANOVA, SAM

Differentially 
Expressed Genes

Data Processing: Ratios, Log Transform, Print-tip Lowess Normalization

Functional Categorization
of Genes 

Data Integration 
Data Mining 

Visualize Transcriptome
Dynamics (3-D Plot)  

Visualize  
Gene Clusters

Formulate New Hypotheses 
Hypothesis Testing 

Figure 3. Analysis pipeline for microarray data.



structure, data volume, and monetary limitations. The

software we use for acquiring, transforming,

processing, clustering and analyzing microarray data

includes ImaGeneTM, (BioDiscovery Inc.), GeneSpringTM

(SiliconGenetics, Redwood City, CA, USA), GEPAS (Herr-

ero et al., 2003a,b;), GEDA (Lyons-Weiler et al., 2003), SAM

(Tusher et al., 2001), KNNimpute (Troyanskaya et al., 2001),

MATLABTM (The Mathworks Inc., Natick, MA, USA), ExcelTM

(Microsoft Inc., Redmond, WA, USA), and Perl (http://

www.perl.com). The backbone of our bioinformatics pipe-

line includes a high-speed workstation with a 2.2 GHz

processor and 2 GB of RAM.

Numerical signal data can be obtained from fluorescence

images using ImaGeneTM software (v5.6, BioDiscovery Inc.).

Similar to the strategy of Hegde et al. (2000), expression

fluorescence values with median signal less than the sum of

the local background mean plus two standard deviations are

deemed indistinguishable from background and flagged.

We require a minimum of three non-flagged replicate

hybridization signals or the EST is scored as lacking suffi-

cient data. For downstream analysis it is sometimes neces-

sary or desirable to estimate missing expression values, but

due caution should be applied in these cases. When

necessary, the KNNimpute algorithm is a logical approach

for estimating missing expression values (Troyanskaya

et al., 2001), but only if the missing values are a small

proportion of the existing values in the data series being

considered.

Data transformation and normalization make it possible to

differentiate between real (biological) variations in gene

expression and experimental error. We have investigated

five data transformations including log2, loge, 1/x, cube-root,

and the linlog transformation of Cui et al. (2002), with and

without local area background corrections, and have found

the log transformations to be most reliable for our experi-

mental design (data not shown).

Consistent with Rocke and Durbin (2001), we observe that

local area background corrections add additional variance to

microarray data, in a non-linear fashion. This is particularly

problematic for genes expressed at low levels and for this

reason local area background corrections are not employed

in our analyses.

We have also investigated four different normalization

methods: lowess, spatial lowess, print-tip lowess, and

spatial þ print-tip lowess (Figure 4; data not shown). Com-

parison of Figure 4(a) with Figure 4(b–d) clearly shows the

value of applying a lowess transformation to raw microarray

data. The lowess approach uses a locally weighted regres-

sion by which expression ratios are reduced to the residual

of the lowess fit of an associated intensity versus ratio curve

(Cleveland, 1979; Cleveland and Devlin, 1988). This normal-

ization method is particularly useful for minimizing system-

atic variance that originates from dye incorporation biases

and differences in the excitation/emission characteristics of

different fluors (Yang et al., 2002b). A significant amount of

systematic variance can also be eliminated from the data set

using corrections for mean local fluorescence (‘spatial’

corrections, Figure 4c) or corrections for print-tip origin

(Figure 4d). Combining the spatial correction with the

print-tip correction yields results that are nearly indistin-

guishable from those obtained with the print-tip correction

alone (data not shown). Of the normalization strategies we

have tested, the print-tip lowess normalization (Yang et al.,

2002b) without a local area background correction seems

most suitable for minimizing systematic error across the

range of signal intensities typically observed.

Figure 4. Efficacy of different normalization methods.

M versus A plots demonstrating the ability of different normalization

algorithms to minimize the systematic variation that exists in the data

obtained from cDNA microarrays. (a) No normalization applied; (b) lowess

normalization; (c) lowess normalization following a spatial correction for

mean regional fluorescence; (d) print-tip lowess normalization. Data shown

derive from a comparison of mRNA isolated from tomato pericarp at 7 days

after pollination with mRNA isolated from tomato pericarp at 17 days after

pollination. The red traces indicate best-fit lines through the data derived from

each of the 32 different print tips. T1, fluorescent signals that correspond with

transcript accumulation in pericarp tissue at 7 days after pollination; T2,

fluorescent signals that correspond with transcript accumulation in pericarp

tissue at 17 days after pollination. Microarray data used in this experiment are

available at http://ted.bti.cornell.edu/.



Despite recent advances in microarray technology,

increased ability to identify and eliminate systematic vari-

ance from microarray data, and the rapid development of

bioinformatic tools, it is important to note that data obtained

from cDNA microarrays have limitations. cDNA microarrays

and expression profiling can be extremely informative but

the data obtained with these tools should continue to be

analyzed with caution because expression artifacts are not

uncommon. Particularly disconcerting is the observation

that different EST clones that originate from the same gene

(i.e. pseudo-replicates) do not always yield the same

expression profiles although they exist on the same array.

An example is shown in Figure 5, which shows the decrease

in photosynthetic capacity during the later stages of tomato

fruit development (Figure 5a) and the expression profiles for

21 TOM1 elements that encode subunit 3A/3C of the

RuBisCO complex (Figure 5b); 90.5% of the expression

profiles shown in Figure 5(b) (19 profiles shown in black)

correlate well with one another and with the decrease in

photosynthetic capacity indicated in Figure 5(a); 9.5% of the

expression profiles shown in Figure 5(b) (two profiles

shown in red) do not correlate with the majority of the

TOM1 elements encoding this gene, nor are they consistent

with the data shown in Figure 5(a). A number of possible

explanations for such artifacts exist. The most likely of these

are non-specific hybridization, annotation errors (i.e. a clone

is not in fact the expected sequence), chimeric clones, and

array elements that contain multiple EST sequences (i.e.

clone contamination). Expression artifacts could also stem

from cDNA labeling efficiency, differences in length of EST

inserts, and secondary structures that can occur in nucleic

acids. In the case of TOM1 ESTs initially thought to encode

the RuBisCO 3A/3C gene, a thorough re-evaluation of clone

EST inserts (via bi-direction re-sequencing, identification of

annotation errors, and identification of array features likely

to contain more than one type of EST sequence) reduces the

occurrence of such artifacts significantly (data not shown).

However, this approach does not eliminate the problem

entirely as both of the (red) profiles shown in Figure 5(b)

derive from bona fide RuBisCO 3A/3C clones that are not

chimeric, are of typical EST length, and do not appear to

have been contaminated by a second EST clone (data not
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Figure 5. Reproducibility among cDNA elements thought to encode the

same gene.

(a) The time course of degradation for photosynthetic pigments in developing

tomato pericarp (cv. Ailsa craig).

(b) The TOM1 array contains 82 elements that have significant sequence

homology to the gene encoding subunit 3A/3C of RuBisCO. Twenty-one of

these 82 elements have been re-sequenced from both the 5¢ and 3¢ ends and

are highly unlikely to derive from chimeric cDNA clones. After data transfor-

mation and normalization, expression profiles for these 21 elements were

generated using the normalized ratios obtained for each time-point compar-

ison after arbitrarily defining the expression level at 7 DAP as 1. The

predominant pattern (black lines) correlates well with the time course of

chlorophyll degradation during tomato fruit development. Two (9.5%) of the

21 profiles shown in (b) have expression patterns (red lines) that deviate

substantially from this predominant expression profile. Pigments were

extracted and quantified via HPLC as described in Fraser et al. (2000), except

that 200 mg of fresh tissue was used for each extraction. The vertical dashed

line represents the breaker stage of fruit development. DAP, days after

pollination. Microarray data used in this experiment are available at http://

ted.bti.cornell.edu/.
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Figure 6. Expression profiles for 21 genes likely to encode components of the

photosynthetic apparatus.

These data exemplify the potential of expression profiling for dissecting the

molecular basis of physiological and developmental processes in plants. The

vertical dashed line represents the breaker stage of fruit development.

(a) Legend: black square, ATPase delta subunit (E-value < 1 · 10)102);

white diamond, cytochrome b6/f subunit (E-value < 7 · 10)95); asterisk,

glyceraldehyde-3-phosphate dehydrogenase A (E-value ¼ 0); black dash,

glyceraldehyde-3-phosphate dehydrogenase B (E-value ¼ 0); black diamond,

oxygen-evolving enhancer protein (E-value ¼ 0); black circle, photo-

system I psaK subunit (E-value < 3 · 10)49); ·, photosystem I PSI-N sub-

unit (E-value < 7 · 10)51); white circle, photosystem II psbQ subunit

(E-value < 2 · 10)56); white square, photosystem II psbY subunit

(E-value < 3 · 10)37); þ, RuBisCO subunit 1 (E-value < 3 · 10)85); white

triangle, RuBisCO subunit 2A (E-value < 1 · 10)96); black triangle, RuBisCO

subunit 3A/3C (E-value < 5 · 10)97).

(b) Legend: white square, CAB CP29 (E-value < 1 · 10)138); white diamond,

CAB type 1 (E-value < 1 · 10)131); black square, CAB type III (E-va-

lue < 1 · 10)136); white circle, CAB type 1B (E-value < 1 · 10)146); black

diamond, CAB type 3C (E-value < 1 · 10)145); black circle, CAB type 4

(E-value < 1 · 10)155); white triangle, CAB type 5 (E-value < 3 · 10)33);

black triangle, CAB type 6A (E-value < 2 · 10)97); ·, CAB type 13

(E-value < 1 · 10)146); CAB, chlorophyll a/b binding protein.



shown). Although problematic, microarray profiling artifacts

do not prohibit one from extracting biologically relevant

expression data from experiments that utilize cDNA

microarrays. For example, Figure 6 clearly demonstrates

decreased accumulation of transcripts encoding 21 different

proteins involved in photosynthesis, as would be expected

in pericarp tissue during tomato fruit development. Data

such as these are consistent with the hypothesis that

physiological processes such as photosynthesis are regula-

ted, at least in part, via coordinated gene expression.

Regardless, until artifacts such as those shown in Figure 5(b)

can be completely eliminated, data of this sort should be

interpreted with appropriate caution and corroborating

evidence should be obtained when possible.

Hybridization replicates increase the accuracy of meas-

urement in microarray studies (Dobbin et al., 2003; Lee

et al., 2000). Despite this fact, accuracy of measurement in

these studies cannot be maximized by simply increasing

experimental replication because microarray analyses have

a variety of systematic variance components and yield data

with magnitude-dependent signal variation. Equally prob-

lematic are the facts that these experiments involve an

extremely large number of variables and yield data that

often do not fit a normal distribution. Some of these

statistical issues can and should be addressed via data

transformation, data processing (e.g. normalization), and

data filtering. For example, microarray data should always

be log transformed [e.g. log2(sig1/sig2)] because this trans-

formation makes variation in signal ratios more independent

of signal magnitude, reduces distribution skew, and pro-

vides a more realistic sense of data variability. A log2

transformation is often used because it converts the expres-

sion values to an intuitive linear scale that represents

twofold differences. Data filtration can be accomplished in

a small variety of ways, but as a minimum should include

the omission of data from entire arrays that clearly did not

yield reliable fluorescence signals and the omission of

fluorescence signals that are ‘flagged’ by image analysis

software.

Identification of differentially expressed genes is con-

founded by the statistical issues that arise in microarray

studies. One issue is that of multiple testing, which comes

about because individual microarray hybridizations com-

prise thousands to tens-of-thousands of different hypothesis

tests. Multiple testing on this type of scale leads to extremely

large numbers of false positives if traditionally accepted

confidence intervals are used (e.g. P < 0.05). For example,

500 false positives are expected when P < 0.05 is used with

an array containing 10 000 different features. Circumventing

the issue of multiple testing can be accomplished in different

ways, depending on the experimental question and one’s

long-term research objectives. One way to reduce this

problem is to produce and use sub-arrays (see above

Microarray technology) containing only those probes that

correspond to genes of interest and genes thought to be

differentially expressed. A more conservative approach to

multiple testing is to use a statistical correction that controls

the family-wise error rate, which is the probability of

accumulating one or more false positives in an experiment

that involves multiple testing (Bonferroni, 1937; Hochberg,

1988; Holm, 1979; Westfall and Young, 1993). An alternative

and less conservative correction for multiple testing is based

on false discovery rate (FDR; Benjamini and Hochberg, 1995;

Benjamini and Yekutieli, 2001; Storey, 2002). FDR statistics

provide an estimate of how many false positives exist

among all the genes initially defined as being differentially

expressed and thereby allow one to establish a criterion for

differential expression based on the number of acceptable

false positives. A variety of statistical tests for differential

expression exist and specific choices should be based on

assumptions about the data being analyzed. If a sufficient

number of replicates exist and expression values fit a normal

distribution, then standard t-tests (with correction for mul-

tiple testing) can be used. Statistical approaches utilizing

ANOVA have also been developed for microarray analyses

(Wolfinger et al., 2001), including models that do not

assume a normal distribution (Kerr and Churchill, 2001; Kerr

et al., 2000b). Non-parametric tests such as the Mann–

Whitney U-test or Wilcoxon’s signed rank test can be used

when necessary, but these tests are often not sufficiently

sensitive to detect small differences in expression. For a

thorough coverage of statistical tests for differential expres-

sion we refer readers to Kerr et al. (2000a), Dudoit et al.

(2002), Nadon and Shoemaker (2002), Cui and Churchill

(2003), and Dobbin et al. (2003).

A variety of approaches exist for the visualization of

microarray data. The most common is a table that con-

veys information about differentially expressed genes.

Typically these tables include some type of clone identifier

(e.g. GenBank number, EST number, array element number),

signal intensities, an expression ratio value, a confidence

statistic (e.g. P-value), annotation based on sequence

homology, and an E-value reflecting the extent of sequence

homology (although the latter is often unfortunately omitted

in many reports). When possible, microarray data should be

visualized using some type of graphical format. This

approach is useful because it allows one to visualize gene

expression as a function of time, space, tissue, and/or

genotype, which is difficult to accomplish with a simple

table (Figure 6). Furthermore, via the application of cluster-

ing algorithms, graphical visualization allows one to assess

the extent of coordinated gene expression in different

biological processes, visualize the transcriptome on a

genomic scale, and identify large groups of genes that have

similar expression profiles. We, and others (Dewey and

Galas, 2001; Kim et al., 2001; Werner-Washburne et al.,

2002), have also found it useful to treat clustered expression

profile data as a three-dimensional data set (e.g. X ¼ gene



number, Y ¼ expression level, and Z ¼ time), which can

then be funneled through software that allows one to

generate high-resolution topology maps (e.g. MATLABTM;

VxInsight�, VisWave LLC, Albuquerque, NM). As an example

of this approach, publicly available data (Chu et al., 1998;

http://cmgm.stanford.edu/pbrown/sporulation/) from a

time-course study of yeast (Sacchcromyces ceraviseae)

sporulation has been rendered in this way (Figure 7). This

approach is an excellent way to visualize transcriptomes

during developmental transitions because it provides a

highly intuitive view of transcriptome dynamics.

Conclusions

In addition to that described above, the protocols we use

regularly for our work with cDNA microarrays are presented

in a step-by-step fashion in the PROTOCOL section of the

Tomato Expression Database (http://ted.bti.cornell.edu/

microarray/interface/protocol.html). These labeling and

analysis protocols should also be viable for use on oligo-

nucleotide-based arrays.

Gene expression profiling holds tremendous promise for

dissecting transcriptional networks and regulatory circuits,

although inherent limitations should be considered to

minimize overinterpretation of resulting data. Microarray

technology is currently being used to investigate a variety

of different physiological and developmental processes in

plant species, via a variety of different profiling techniques.

Some examples include responses to different stresses

(Desikan et al., 2001; Fowler and Thomashow, 2002),

environmental conditions (Ma et al., 2001; Paul et al.,

2004; Schaffer et al., 2001; Tepperman et al., 2001), path-

ogens and symbionts (Fedorova et al., 2002; Maleck et al.,

2000; Puthoff et al., 2003; Reymond et al., 2000), and

various developmental processes (Adams-Phillips et al.,

2003; Aharoni et al., 2000; Devlin et al., 2003; Jiao et al.,

2003; Moseyko et al., 2002). Studies such as these are

generating an overwhelming amount of microarray data,

the vast majority of which has yet to be analyzed

sufficiently or integrated with our existing knowledge

base. Efficient analysis and integration will undoubtedly

require standardization of nomenclature and standards for

experiment documentation and data formats (such as the

systems put forth by the Gene Ontology Consortium and

the MGED Society). Furthermore, untimely deposition of

microarray data sets in public databases may influence our

ability to successfully incorporate microarray data into our

existing knowledge base. Analysis and integration of these

data will also require further improvement of genomics

technologies and those associated with metabolomic and

proteomic analyses (Rose et al., this issue), novel bioin-

formatic approaches, and extensive inter-disciplinary col-

laborations between biologists, chemists, physicists,

computer scientists, and statisticians.
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Figure 7. 3-D representation of transcriptional dynamics in yeast during

sporulation.

The data shown represent the expression of the entire yeast genome during a

12-h period. Microarray data obtained and processed by Chu et al. (1998) was

down-loaded from http://cmgm.stanford.edu/pbrown/sporulation/. The proc-

essed data was then re-organized into a single metacluster using the

self-organizing tree algorithm in the Gene Expression Pattern Analysis Suite

(GEPAS, v1.1; http://gepas.bioinfo.cnio.es). The metacluster data was

then funneled through MATLABTM to generate the 3-D image

shown (X-axis ¼ gene number, Y-axis ¼ relative expression level, and

Z-axis ¼ time). (a) Relative expression of genes that are primarily upregulated

(orange and red coloration) during the process of yeast sporulation. (b)

Relative expression of genes that are primarily downregulated (aqua and blue

coloration) during the process of yeast sporulation. The order of genes shown

on the X-axis is identical for (a) and (b), such that the gene shown at position 1

in (a) is the same gene shown at position 1 in (b).
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