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ABSTRACT: In the present paper, a dimension-reduction modeling method is proposed for a dual 

stochastic dynamic system of non-stationary ground motion stochastic processes and stochastic 

structures. In the proposed method, the random variables describing the stochastic ground motions and 

structural parameters are respectively represented by the functions of one elementary random variable, 

resulting in the entire stochastic dynamic system can be represented by merely two elementary random 

variables. Since the number of elementary random variables needed is extremely small, the set of 

representative points in regard to the elementary random variables can thus be selected by number 

theoretical method. Benefiting from the proposed method, it can be conveniently combined with the 

probability density evolution method to realize the dynamic response analysis and dynamic reliability 

evaluation of nonlinear stochastic structures. The seismic response analysis of an eight-storey 

reinforced concrete frame structure with random parameters subjected to non-stationary stochastic 

ground motions are investigated as case studies. Numerical results fully demonstrated the effectiveness 

of the proposed method.  

 

In recent years, the dynamic response analysis of 

deterministic structures subjected to stochastic or 

deterministic excitations of dynamic disasters 

has been extensively investigated and well 

developed (Belytschko et al. 2000; Xu, et al.  

2018). Nevertheless, the research on dynamic 

response analysis of structural system with 

random parameters, i.e., the stochastic structures, 

has been relatively lagged behind. In fact, the 

structural randomness, including the randomness 

of physical and geometric parameters upon a 

structural member caused by uncontrollable 

factors during the production process, would 

usually exist objectively and be unignorable. 

Practically, the external excitations acting on the 

engineering structures are commonly described 

as the stochastic processes. Therefore, it is 

reasonable and of great importance to study on 

the dynamic response of stochastic structures 

induced by the non-stationary stochastic 

excitations. 

To this end, several stochastic approaches, 

such as the Monte Carlo simulation method 

(MCM) (Shinozuka, 1972) and its variants 

(Spanos & Zeldin 1998), the random 

perturbation method (Kleiber & Hien 1992) and 

the orthogonal polynomial expansion method 

(Ghanem & Spanos 1991, Li 1996), have been 

put forward in the past decades. Despite the 

progress being made, the application of these 
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methods in large scale realistic problems is still 

limited, either due to prohibitive computational 

costs or due to their inability to deal with 

structures with complex behavior.  

Lately, a valid method is added to the family 

of the stochastic methods, namely, the 

probability density evolution method (PDEM) 

(Li & Chen, 2004) which has a good 

development prospect. This method can obtain 

the instantaneous probability density function 

(PDF) as well as its response evolution of 

general stochastic dynamic systems, including 

linear and nonlinear stochastic structures. 

However, the main obstacle to the PDEM is that 

the convolution integral must be performed on 

the sample space of the elementary random 

variables, which limits the number of the 

elementary random variables that the method can 

handle. In particular, it is difficult to implement 

the modeling of the stochastic processes of the 

external excitations because of the large number 

of random variables generally retained in 

simulation function. On the other hand, 

theoretically, the efficiency of Monte Carlo 

simulation method is independent of the 

dimension of random variables. Even so, if too 

many random variables are involved, it will be 

very difficult to generate high-dimensional 

pseudo-random numbers, because there may be 

strong correlation between pseudo-random 

numbers of different dimensions (Glasserman 

2013). 

In recent years, remarkable progress has 

been made to effectively reduce the number of 

elementary random variables in the simulation of 

stochastic processes. A stochastic harmonic 

function representation was developed, which 

could express the stochastic processes with just a 

few dozens of random variables (Chen et al. 

2013). Later, the dimension-reduction methods 

were proposed to realize the simulation of 

stochastic processes using just one or two 

elementary random variables (Liu et al. 2016; 

2017).  

In this paper, a dimension-reduction 

modeling method is developed for a dual 

stochastic dynamic structural system of non-

stationary stochastic ground motion processes 

and stochastic structures, through which the 

probability density evolution analysis of the 

nonlinear structures can also obtained. Benefiting 

from this proposed scheme, the high-dimensional 

randomness degree is efficiently reduced to 

merely two. The remaining contents of this paper 

are arranged as follows. Section 1 introduces the 

dimension reduction simulation method for 

spectrum-compatible non-stationary ground 

motions. The dimension-reduction method of 

stochastic structural parameters is elaborated in 

Section 2. Section 3 shows the simulation results 

of stochastic ground motions and random 

structural parameters. In section 4, the responses 

of random structures under stochastic ground 

motions are analyzed. Conclusions drawn from 

this study are summarized in Section 5. 

1. DIMENSION-REDUCTION OF NON-

STATIONARY STOCHASTIC GROUND 

MOTIONS 

According to Priestley’s evolutionary spectral 

representation theory, a non-stationary stochastic 

ground motion process 
g ( )U t  with zero-mean 

can be expressed as the following finite series 

form (Liu et al., 2016) 

 
g

g

1

( ) ( , ) cos( ) sin( )
N

n n n n nU
n

u t G t t X t Y   


  

 (1) 

where g ( )u t  denotes the representative time 

histories of the ground motion process g ( )U t . 

g

( , )
U

G t   denotes the one-sided evolutionary 

power spectral density (EPSD) function of the 

non-stationary ground motion process 
g ( )U t .  

In Eq. (1),  ,n nX Y ( 1,2, , )n N  refers to 

a set of the standard orthogonal random variables, 

which must satisfy the following 

basic conditions (Liu et al. 2016) 

    0n nE X E Y  ,   0m nE X Y  , 
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   m n m n mnE X X E Y Y               (2) 

where [ ]E   indicates the mathematical 

expectation, 
mn denotes the Kronecker-Delta. 

After adopting the idea of random functions, 

the set of the standard orthogonal random 

variables  ,n nX Y ( 1,2, , )n N  can be 

expressed as the following random function form 

(Liu et al. 2018) 

1 12 cos( )nX n    , 1 12 sin( )nY n    , 

( , 1,2, , )n n N   (3) 

where 
1  is the elementary random variable 

following the uniform distribution over the range 

[0,2 ; 
1  is a constant in the range [0,2  and 

is taken as    in this paper; n  is a unique one-

to-one mapping of n . This mapping operation 

can be carried out by employing the Matlab Tool 

box functions (' ',0)rand state  and 

( )randperm N . Obviously, Eq. (3) completely 

satisfies the basic conditions involved in Eq. (2). 

Consequently, the fully non-stationary 

stochastic ground motions could be represented 

by just one single elementary random variable 

through the above treatment. 

2. DIMENSION-REDUCTION OF 

STRUCTURE WITH RANDOM 

PARAMETERS 

In general, the random field model cannot be 

directly used in the finite element method, which 

causes the random field has first to be replaced 

by rN  (a limited number) of random variables. 

In this paper, all input structural parameters are 

supposed to be deterministic except for Young’s 

modulus (elastic modulus) and Poisson's ratio of 

the material which are treated as the random 

parameters. It is assumed that the elastic modulus 

( 1,2, , )i rE i N  and the Poisson's ratio 

( 1,2, , )i ri N   obey normal distributions 

and they are irrelevant. For convenience, the 

standard normal random variables i  and 

( 1,2, , )i ri N   can be further introduced to 

respectively describe the random variables iE  

and i which and satisfy the following condition 

(1 )
i ii E E iE     , (1 )

i ii i          (4) 

where 
iE  and 

iE  are the mean and coefficient 

of variation (COV) of 
iE , respectively. 

i
  and 

i
  are the mean and COV of 

i , respectively. 

Obviously, the stochastic structure degrades to 

the deterministic structure when all the COV are 

equal to zero. 

Note that the standard normal random 

variables i  and ( 1,2, , )i ri N   are also 

unrelated random variables and they must satisfy 

the following basic conditions 

    0i iE E   , 0i jE      , 

i j i j ijE E                      (5) 

As we can see from the above equations, it 

is interesting that Eqs. (2) and (5) have exactly 

the same form. As a result, the dimension-

reduction representation embedded in the 

random function articulated in Section 1 can also 

be applied herein to further reduce the number of 

random variables upon the stochastic structures. 

In this paper, a class of random functions 

proposed by Liu et al. (2017) is used to construct 

the standard normal random variables i  and i , 

which are given as follows 

1

2 2

1 1
arcsin cos( )

2
i i   
       

 
  (6a) 

1

2 2

1 1
arcsin sin( )

2
i i   
       

 
 (6b) 

where 1   represents the inverse function of 

standard normal distribution function.
 

, 1,2, , ri i N . i  is a unique one-to-one 

mapping of i , and the implementation of this 

mapping operation is similar to that in Eq. (3). 
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2  is the elementary random variable uniformly 

distributed over the interval [0,2 ) . 2  is an 

constant and is taken as π / 6 . 

Through the conversions of Eqs. (4) and (6), 

only one elementary random variable, i.e., 
2  is 

required to describe the structural parameters. 

Thus, the number of random variables describing 

the structural parameters is reduced from 2 rN  to 

merely one, which realizes the dimension-

reduction representation of structure with 

random parameters. Coupled with the previous 

one elementary random variable used to simulate 

the stochastic ground motions as described in 

Section 1, there are merely two elementary 

random variables, namely 1  and 2 , involved 

in the whole stochastic dynamic system. 

3. SIMULATION OF STOCHASTIC 

GROUND MOTIONS AND STOCHASTIC 

STRUCTURES 

3.1. Simulation procedure 

i) In accordance with the number theoretical 

method (Li and Chen, 2007), seln  representative 

points of the basic random variables 

 1 2,    are selected at intervals 

[0,2 [0,2  , and the corresponding assigned 

probability lP  is determined. 

ii) Using Eq. (3) to generate the orthogonal 

random variables  ,n nX Y , and then use Eq. (1) 

to generate
 seln  representative time histories of 

non-stationary stochastic ground motions. 

Meanwhile, each representative time history  has 

a assigned probability of lP . 

iii) Using Eq. (6) to generate the standard 

normal random variables  ,i i  , and then the 

samples of elastic modulus and Poisson's ratio 

can be generated using Eq. (4). For each samples 

of elastic modulus and Poisson's ratio, there is a 

given probability lP .  

In this way, a dual stochastic dynamic 

structural system of stochastic excitations and 

stochastic structures represented by two 

elementary random variables  1 2,    is 

constructed. 

3.2. Simulation of stochastic ground motions 

It is assumed that the frame structure is located at 

the site with the seismic fortification intensity of 

eight degree. Other parameters involved are 

given as follows: 1600N  , 0.15rad s  , 

u 240rad s  , 0.01st  , and the duration of 

the ground motion process is 25sT  . 

According to the simulation procedures 

mentioned in Section 3.1, 144 representative 

time histories of the non-stationary stochastic 

ground motions are generated. Fig. 1 shows one 

representative time histories of the ground 

motions. It can be seen that the sample has 

typical characteristics of non-stationary. 

 
Figure 1: One representative time history 

Fig. 2 shows the comparison of the mean 

and standard deviation upon its target value of 

the sample time-history set. It can be seen that 

the generated ground motion sample process is 

very close to the target value, which verifies the 

effectiveness of the method. 
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Figure 2: Comparison of samples mean and standard 

deviation of ground motion with target values 

At present, the seismic design codes for 

various structures are based on the response 

spectrum as the ground motion input. Usually, 

the average response spectrum and the code 

response spectrum have certain fitting accuracy 

requirements.  

 
Figure 3: Response spectrum of the average sample 

processes and the Chinese code 

Fig. 3 is a comparison chart of the obtained 

response spectrum, and it can be seen that the 

error between the two is large, especially in the 

long period, the difference is more obvious. For 

the seismic design time history of high-rise 

buildings or large-span structures, the long-

period ground motion component plays an 

important role, so the fitting of the long-period 

partial response spectrum should have higher 

precision. To this end, Cacciola (2010) proposed 

a simple iterative correction method, the effect is 

also significant, this paper uses this method to 

correct. Fig. 3 also shows the comparison 

between the revised calculated response 

spectrum and the code spectrum (GB 50011-

2010). It can be seen that the revised response 

spectrum and the target spectrum after iteration 

have a very good fitting effect. The average error 

and the maximum error are 2.1% and 6.03% 

respectively. 

3.3. Simulation of structure with random 

parameters 

An eight-storey reinforced concrete frame 

structure is studied within this section. The 

partial geometric sizes of the structure are listed 

as follows: the height of the first storey is 4.2m, 

and that of the rest, respectively, is 3m. The 3D 

model of the reinforced concrete frame structure 

is shown in Fig. 4. In order to reflect the 

nonlinearity of the structure, this study adopts 

the Modified Takeda Trilinear model as the 

hysteretic model for beams and columns. It is 

assumed that the bottom of the frame column is 

rigidly connected to the base. 

 
Figure 4: 3D model of the frame structure 

For simplicity, the random parameters of the 

structure are divided by the number of storeys, 

namely 8rN  . The mean and COV of the 

elastic modulus and Poisson's ratio of each layer 

are given as follows. 
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10 23.0 10 N/m
iE  

 
for

 
2,3, ,i N , 

0.2
i

  , and all of the COV is taken as 0.2. 

Based on the procedures i) and iii) mentioned in 

Section 3.1, 144 sets of  , ( 1,2, , )i i rE i N   

are generated for simulation purpose.  

4. SEISMIC RESPONSE ANALYSIS OF 

STOCHASTIC NONLINEAR STRUCTURE 

Under uniform earthquake excitations, the 

dynamic equation of a nonlinear multi-degree-of-

freedom structural system using the finite 

element method can be written as 

g( ) ( ) ( ) ( ) ( )U t    M U C U + G U M      

(7) 

where 
g( )U t  is a stochastic seismic 

acceleration process generated by Eq. (1).   

denotes column vector with element 1. U , U and 

U  are the accelerations, velocities and 

displacements response vectors, respectively. M  

and C  denote the mass and damping matrix of 

the structure; G  denotes the nonlinear restoring 

force vector of the system. 

The randomness of any physical responses 

(such as displacement etc.) of the dynamical 

system in Eq. (7) comes from stochastic seismic 

excitation and structural parameters. Therefore, 

arbitrary interested physical-response quantities 

involved in the system in Eq. (7) can be 

expressed as 

( , )Z H t                       (8) 

The velocity of the physical quantity Z  is 

defined as ( , )Z h t  , where h H t   . 

Obviously, Eq. (8) can be regarded as a 

stochastic system by itself, in which the source 

randomness are completely described by  . 

Moreover, if we denote the joint PDF of Ζ    

as ( )Ζp z t  , the generalized probability 

density evolution equation of the form can be 

obtained as follows (Li & Chen, 2009) 

( ) ( )
+ ( ) 0Ζ Ζp z t p z t

h t
t z


     

 
 

  
    (9) 

In order to assess the damage of the frame 

structure under the stochastic earthquake 

excitations, the inter-storey drift angle, i.e., 

( )j t ( 1,2, , )rj N  is chosen as the interested 

physical-response. Again, the inter-storey drift 

angles of deterministic structure and stochastic 

structure are investigated in this paper for 

comparative purposes. By using the PDEM, the 

probability information of the inter-storey drift 

angle ( )j t  can be obtained. In this paper, only 

the probability information of stochastic 

response 1( )t  under stochastic earthquake 

excitations is given as an example. 

Fig. 5 shows the mean and the standard 

deviation of the inter-storey drift angle 1( )t . As 

can be seen in Fig. 5, there is a great difference 

between the deterministic structure and the 

stochastic structure in the changing trend of the 

mean figure. Fig. 5 shows that the amplitudes of 

the standard deviation upon the stochastic 

structure are slightly larger than that of the 

deterministic one. 

 
Figure 5: Mean and standard deviation of 1( )t  

Fig. 6 shows the PDFs at three typical 

instants of 1( )t  with respect to the 

deterministic structure and the stochastic 

structure. It can be found that there is a 

remarkable difference of the PDFs at different 

instants upon both the deterministic and the 
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stochastic structures. The PDFs of the response 

at the same time instant would change 

considerably when the randomness of the 

structural parameters are considered. 

 
(a) Deterministic structure 

 
(b) Stochastic structure 

Figure 6. PDF at certain instants of 1( )t   

5. CONCLUSIONS 

In this study, a dimension-reduction modeling 

method is proposed for a dual stochastic dynamic 

structural system of the non-stationary stochastic 

ground motion processes and stochastic 

structures. By means of applying the random 

function to model the seismic excitations and 

structural random parameters, the entire 

stochastic dynamic system can thus be readily 

represented by just two elementary random 

variables. Due to a small number of the 

elementary variables required by the proposed 

method, the PDEM can be efficiently used for 

dynamic response analysis and dynamic 

reliability assessment of complex nonlinear 

structures with numerous random parameters. 

Numerical investigations adequately reveal the 

availability of the proposed scheme in 

engineering practices. 
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