4,227 research outputs found

    Towards QoS provisioning in a heterogeneous carrier-grade wireless mesh access networks using unidirectional overlay cells

    Get PDF
    Proceedings of: 6th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, QShine 2009 and 3rd International Workshop on Advanced Architectures and Algorithms for Internet Delivery and Applications, AAA-IDEA 2009, Las Palmas, Gran Canaria, November 23-25, 2009The visibility and success ofWireless Mesh Network (WMN) deployments has raised interest among commercial operators in this technology. Compared to traditional operator access networks WMNs have the potential to offer easier deployment and flexible self-reconfiguration at lower costs. A WMN-type architecture considered as an alternative for an operator access network must meet similar requirements such as high availability and guaranteed QoS in order to support triple-play content provisioning. In this paper we introduce an architecture of such a Carrier-grade Wireless Mesh Access Network (CG-WMAN). We then present our contribution, an approach to seamlessly integrate unidirectional broadcast cells (i.e. DVB-T) into such a CG-WMAN. This allows higher layer protocols to utilize broadcast cells like regular mesh links, where beneficial for a given payload and receiver distribution. We then present a typical use case and discuss for which combinations of traffic type, user distribution and QoS requirements the use of longer range broadcast technologies can help to improve the overall CG-WMAN performance in terms of throughput and reliability.European Community's Seventh Framework ProgramPublicad

    On the Derivation of Vector Radiative Transfer Equation for Polarized Radiative Transport in Graded Index Media

    Full text link
    Light transport in graded index media follows a curved trajectory determined by the Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.Comment: This paper has been submitted to JQSR

    Understanding of hydrogel network formation and its application in the architecture of significantly enhanced hydrogel

    Full text link
    An understanding of the physical hydrogel network formation has been obtained by dynamic rheological experiments. The evidence shows that the network formation turns out to be a nucleation-controlled process. It was found that there exists a critical temperature Tc; fiber branching is greatly enhanced when the network formation is performed in the regime of T&lt;Tc (T, the final setting temperature). This finding enables the authors to build significantly enhanced gel networks. So far G&prime; (elastic modulus) of the hydrogel network has been enhanced by 187% while the formation period can be greatly shortened to only 1/20 of the previous process.<br /

    Simulation of reference crop evapotransiration in a plastic solar green house using a simplified energy balance approach

    Get PDF
    Proceedings of International conference on Agricultural and Biological Sciences (ABS 2015) held in Beijing, China on July 25-27, 2015With larger planting areas being used in greenhouses, evaluating crop evapotranspiration in a greenhouse has garnered greater attention. Currently, calculating the reference crop evapotranspiration for a greenhouse crop through using the Penman-Monteith formula recommended by FAO is difficult because the wind speed in a greenhouse is approximate zero. In order to calculate reference crop evapotranspiration in a greenhouse by the Penman-Monteith modified formula, a simplified model for calculating reference crop evapotranspiration in a greenhouse was proposed based on the energy balance equation, which was the correlative function between reference crop evapotranspiration and radiation and temperature. The model's parameters were obtained through meteorological data taken from the inside of a greenhouse in 2011. Then, the model was validated by using meteorological data within the greenhouse in 2012, and the fitted value of the model agreed with the calculated value of the formulas with a determination coefficient (R2) of 0.9554. This model is an easy means of calculating the reference crop evapotranspiration in a greenhouse because less meteorological factors are needed. Furthermore, the model provides a theoretical basis for crop irrigation in greenhouses

    Tunnelling through black rings

    Full text link
    Hawking radiation of black ring solutions to 5-dimensional Einstein-Maxwell-dilaton gravity theory is analyzed by use of the Parikh-Wilczek tunnelling method. To get the correct tunnelling amplitude and emission rate, we adopted and developed the Angheben-Nadalini-Vanzo-Zerbini covariant approach to cover the effects of rotation and electronic discharge all at once, and the effect of back reaction is also taken into account. This constitute a unified approach to the tunnelling problem. Provided the first law of thermodynamics for black rings holds, the emission rate is proportional to the exponential of the change of Bekenstein-Hawking entropy. Explicit calculation for black ring temperatures agree exactly with the results obtained via the classical surface gravity method and the quasilocal formalism.Comment: 10 pages, V2: various modifications throughout the text, plus a lot of newly added reference

    A Deficiency Problem of the Least Squares Finite Element Method for Solving Radiative Transfer in Strongly Inhomogeneous Media

    Full text link
    The accuracy and stability of the least squares finite element method (LSFEM) and the Galerkin finite element method (GFEM) for solving radiative transfer in homogeneous and inhomogeneous media are studied theoretically via a frequency domain technique. The theoretical result confirms the traditional understanding of the superior stability of the LSFEM as compared to the GFEM. However, it is demonstrated numerically and proved theoretically that the LSFEM will suffer a deficiency problem for solving radiative transfer in media with strong inhomogeneity. This deficiency problem of the LSFEM will cause a severe accuracy degradation, which compromises too much of the performance of the LSFEM and makes it not a good choice to solve radiative transfer in strongly inhomogeneous media. It is also theoretically proved that the LSFEM is equivalent to a second order form of radiative transfer equation discretized by the central difference scheme

    White noise reduction for wideband linear array signal processing

    Get PDF
    The performance of wideband array signal processing algorithms is dependent on the noise level in the system. A method is proposed for reducing the level of white noise in wideband linear arrays via a judiciously designed spatial transformation followed by a bank of highpass filters. A detailed analysis of the method and its effect on the spectrum of the signal and noise is presented. The reduced noise level leads to a higher signal to noise ratio (SNR) for the system, which can have a significant beneficial effect on the performance of various beamforming methods and other array signal processing applications such as direction of arrival (DOA) estimation. Here we focus on the beamforming problem and study the improved performance of two well-known beamformers, namely the reference signal based (RSB) and the linearly constrained minimum variance (LCMV) beamformers. Both theoretical analysis and simulation results are provided

    Three-Dimensional Superconductivity in the Infinite-Layer Compound Sr_{0.9}La_{0.1}CuO_2 in Entire Region below TcT_c

    Full text link
    The infinite-layer compound ACuO2_{2} (A == alkaline-earth ions) is regarded as the most suitable material for exploring the fundamental nature of the CuO2_2 plane because it does not contain a charge-reservoir block, such as a rock-salt or a fluorite like block. We report that superconductivity in the infinite-layer compound Sr0.9_{0.9}La0.1_{0.1}CuO2_2 is of a three-dimensional nature, in contrast to the quasi two-dimensional superconducting behavior of all other cuprates. The key observation is that the cc-axis coherence length is longer than the cc-axis lattice constant even at zero temperature. This means that the superconducting order parameter of one CuO2_{2} plane overlaps with those of neighboring CuO2_{2} planes all the temperatures below the TcT_c. Among all cuprates, only the infinite-layer superconductor shows such a feature.Comment: 4 pages and 4 figure

    On 2D Viscoelasticity with Small Strain

    Full text link
    An exact two-dimensional rotation-strain model describing the motion of Hookean incompressible viscoelastic materials is constructed by the polar decomposition of the deformation tensor. The global existence of classical solutions is proved under the smallness assumptions only on the size of initial strain tensor. The proof of global existence utilizes the weak dissipative mechanism of motion, which is revealed by passing the partial dissipation to the whole system.Comment: Different contributions of strain and rotation of the deformation are studied for viscoelastic fluids of Oldroyd-B type in 2

    Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting

    Get PDF
    The official published version of this Article can be found at the link below - Copyright @ 2006 ASM InternationalAn investigation has been made into the solidification behavior and microstructural evolution of AM50, AM70, and AM90 alloys during rheo-diecasting, their processibility, and the resulting mechanical properties. It was found that solidification of AM series alloys under intensive melt shearing in the unique twin-screw slurry maker during rheo-diecasting gave rise to numerous spheroidal primary magnesium (Mg) particles that were uniformly present in the microstructure. As a result, the network of the beta-Mg17Al12 phase was consistently interrupted by these spheroidal and ductile particles. Such a microstructure reduced the obstacle of deformation and the harmfulness of the beta-Mg17Al12 network on ductility, and therefore improved the ductility of rheo-diecast AM alloys. It was shown that, even with 9 wt pct Al, the elongation of rheo-diecast AM90 still achieved (9 +/- 1.2) pct. Rheodiecasting thus provides an attractive processing route for upgrading the alloy specification of AM series alloys by increasing the aluminum (Al) content while ensuring ductility. Assessment of the processibility of AM series alloys for semisolid processing showed that high Al content AM series alloys are more suitable for rheo-diecasting than low Al content alloys, because of the lower sensitivity of solid fraction to temperature, the lower liquidus temperature, and the smaller interval between the semisolid processing temperature and the complete solidification temperature.This work is supported by the EPSR
    corecore