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Abstract

The performance of wideband array signal processing algorithms is dependent on the noise level in the system. A method is

proposed for reducing the level of white noise in wideband linear arrays via a judiciously designed spatial transformation followed

by a bank of highpass filters. A detailed analysis of the method and its effect on the spectrum of the signal and noise is presented.

The reduced noise level leads to a higher signal to noise ratio (SNR) for the system, which can have a significant beneficial

effect on the performance of various beamforming methods and other array signal processing applications such as direction of

arrival (DOA) estimation. Here we focus on the beamforming problem and study the improved performance of two well-known

beamformers, namely the reference signal based (RSB) and the linearly constrained minimum variance (LCMV) beamformers.

Both theoretical analysis and simulation results are provided.

Index Terms

White noise reduction, uniform linear arrays, nonuniform linear arrays, wideband beamforming, direction of arrival estimation,

performance analysis.

I. INTRODUCTION

Wideband array signal processing, including beamforming and direction of arrival (DOA) estimation, has various applications

in radar, sonar and wireless communications, and has been studied extensively in the past [1]–[9]. The performance of wideband

array signal processing algorithms is dependent on the level of noise in the system, and normally the lower the level of noise,

the better is the performance. Many methods have been developed in the past to reduce the noise level of a system, and one

example is adaptive noise cancellation (ANC), which uses a reference undesired noise source and a primary source contaminated

by noise, followed by adaptive filtering to produce a cleaned result [10], [11].

One common assumption for noise in wideband arrays is that it is both spatially (and in many cases also temporally) white.

That is, the noise at one array sensor is uncorrelated with that at other sensors. Under this assumption, it seems that there is not

much we can do about it and we have to simply accept whatever is left of the noise component after processing the signals.

For example, in the simplest beamforming structure shown in Fig. 1a, the beamformer output y[n] is a linear combination

of the received array signals x0[n], x1[n], · · · , xM−1[n] weighted with the coefficients w0, w1, · · · , wM−1. The values of these

coefficients are obtained based on some criterion such as maximizing the output signal to interference plus noise ratio (SINR).
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(b) A general wideband beamformer with M sensors and J taps.

Figure 1: General structure of narrowband and wideband beamformers

The question here is, whether there is anything that we can do to reduce the effect of white noise in a wideband array system

(without attenuating the directional signals) so that the performance of the subsequent processing (such as DOA estimation

and beamforming) could be improved.

In this paper, we aim to answer that question by developing a novel method to reduce the white noise level of a wideband

array using a combination of a set of judiciously designed spatial transformations and a bank of filters, and the key is to

realize that the white noise and the directional wideband signals received by the array have different spatial characteristics.

Based on this difference, and motivated by the low-complexity subband-selective adaptive beamformer proposed in [12], we

first transform the received wideband sensor signals into a new domain where the directional signals are decomposed in such

a way that their corresponding outputs are associated with a series of tighter and tighter highpass spectra, while the spectrum

of noise still covers the full band from −π to π in the normalized frequency domain. Then, a series of highpass filters with

different cutoff frequencies are applied to selectively remove part of the noise spectrum while keeping the directional signals

unchanged. Finally, an inverse transformation is applied to the filtered outputs to recover the original sensor signals, where

compared to the original set of received sensor signals, the directional signals are left intact while the noise power has been

reduced. The main assumption of the work is that the spectrum of the noise is white, and the noise between the sensors is

uncorrelated. If the noise is correlated between the sensors, depending on the spectrum of the correlated noise and how the
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Figure 2: A block diagram for the general structure of the proposed noise reduction approach.

noise is correlated between the sensors, a different analysis would be needed.

Compared to our earlier published work in [13], where the idea was applied to uniform linear arrays (ULAs) for DOA

estimation, in this paper, we extend it to arbitrary linear arrays and also focus on the beamforming problem. In particular, we

give a detailed analysis of the spectrum of noise at different stages of the processing and provide theoretical results to show

the improved performance; in addition, to accommodate the nonuniform linear array (NLA) geometry, a new design for the

transformation matrix is proposed.

One condition placed on the transformation matrix is that it must be invertible. We have further assumed that it is also

unitary and thus the discrete Fourier transform (DFT) matrix is used as a representative example for the ULA case and a

least squares based design is introduced for the NLA case. Detailed analysis shows that the signal to noise ratio (SNR) of the

array after the proposed processing can be improved by about 3dB in the ideal case. This is then translated into improved

performance for beamforming, as demonstrated by both theoretical analysis and simulation results. Here we focus on two

well-known beamformers, namely the reference signal based (RSB) [14]–[17], and the linearly constrained minimum variance

(LCMV) beamformers [2], [18], [19].

This paper is organized as follows. In Section II, the general structure of our proposed method is first introduced. In

Section III, the DFT matrix as a choice for the transformation matrix for ULAs is studied and the spectrum of noise at

different stages of the processing is analysed. In Section IV, the adaptive beamformers and the effect of the noise reduction

method on their correlation values are explained in detail. Extension of the method to the NLA case is provided In Section V.

Simulation results based on the two adaptive beamformers are presented in Section VI in comparison with the theoretical

results, and conclusions are drawn in Section VII.

II. GENERAL STRUCTURE OF THE PROPOSED METHOD

Consider an M-element arbitrary linear array. A block diagram for the general structure of the proposed method is shown

in Fig. 2. The M received array signals xm[n], m = 0, . . . ,M − 1, are first processed by an M ×M transformation matrix A,

and then its outputs qm[n], m = 0, . . . ,M −1, pass through a bank of highpass filters with impulse responses given by hm[n],

m = 0, . . . ,M − 1. The outputs of these filters are denoted by zm[n], m = 0, . . . ,M − 1 and these are then transformed by the

M ×M inverse transformation A−1. For simplicity we assume A is unitary, i.e., A−1 = AH , where {·}H denotes Hermitian

transpose.

There are two components for the received array signal xm[n] at the m-th sensor: the signal part sm[n] and the white noise

part bm[n]. So we have:

xm[n] = sm[n]+bm[n]. (1)



4

The total signal vector x[n] can be expressed as

x[n] = s[n]+b[n], (2)

where

x[n] = [x0[n],x1[n], · · · ,xM−1[n]]
T ,

s[n] = [s0[n],s1[n], · · · ,sM−1[n]]
T ,

b[n] = [b0[n],b1[n], · · · ,bM−1[n]]
T .

Applying the M×M transformation matrix A to the signal vector x[n], we obtain the output signal vector q[n] as

q[n] = Ax[n], (3)

where

q[n] = [q0[n],q1[n], · · · ,qM−1[n]]
T .

The element of A at the m-th row and l-th column is denoted by am,l , i.e., [A]m,l = am,l . Each row vector of A acts as a

simple beamformer, and its output qm[n] is given by

qm[n] =
M−1

∑
l=0

am,lxl [n]. (4)

The beam response Rm(Ω,θ) of this simple beamformer as a function of the normalized frequency Ω and the DOA angle θ

is [12], [20],

Rm(Ω,θ) =
M−1

∑
l=0

am,le
−iµlΩsinθ , (5)

where µl = dl/cTs and Ω = ωTs, with dl being the distance from the zero-th sensor to the l-th sensor (where d0=0), c the wave

propagation speed, Ts the sampling period, and ω the angular frequency of signals.

With Ω̂ = Ωsinθ , we can obtain an alternative representation of Rm(Ω,θ) as follows

Am(Ω̂) =
M−1

∑
l=0

am,le
−iµlΩ̂, (6)

where Ω̂ is representing the spatial frequency of the received signal, Am(Ω̂) is the frequency response of the m-th row vector

of the M×M transformation matrix A (if we consider each row vector as the impulse response of a finite impulse response

(FIR) filter).

Similar to [12], the frequency responses Am(Ω̂), m = 0,1, · · · ,M − 1, are arranged to be bandpass, each with a bandwidth

2π/M. The row vectors of A all together cover the whole frequency band which is [−π : π]. An ideal example for an odd

number M is shown in Fig. 3a.

The bandpass filters, which are used as row vectors of A, have a highpass filtering effect on the received array signals. To

examine this highpass behaviour, the l-th row vector is analyzed. The frequency response of this row vector is shown in Fig.

3a, which is:

∣

∣Al(Ω̂)
∣

∣=







1, for Ω̂ ∈ [Ω̂l,L : Ω̂l,U ]

0, otherwise.
(7)

As sinθ ∈ [−1 : 1] when θ ∈ [−π/2 : π/2], the possible maximum frequency component of the l-th row vector Al(Ω̂) is

Ω = π , which corresponds to |sinθ | = Ω̂l,U/π when Ω̂l,L ≥ 0, while the minimum frequency component is Ω = Ω̂l,L, which

corresponds to |sinθ |= 1, then we have the response of Al(Ωsinθ) as a function of Ω in the following:
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Figure 3: Frequency responses of the row vectors of A in the ideal case and the highpass filtering effect of a sample row

vector.

|Al(Ωsinθ)|=







1, for Ω ∈ [Ω̂l,L : π]

0, otherwise.
(8)

as shown in Fig. 3b.

Considering the above frequency response, the received array signal components with frequency of Ω ∈ [−Ω̂l,L : Ω̂l,L] will

not “pass” through this row vector, since Ω̂ = Ωsinθ does not fall into the passband of [Ω̂l,L : Ω̂l,U ], no matter what value the

DOA angle θ takes. Therefore, the frequency range of the output is |Ω| ≥ Ω̂l,L and the lower bound is determined by Ω̂l,L

when Ω̂l,L > 0. Alternatively, the lower bound is determined by |Ω̂l,U | when Ω̂l,L < Ω̂l,U < 0.

As a result, the output spectrum of the directional signal part of ql [n] corresponding to the l-th row vector will then be

highpass filtered as shown in Fig. 3b. As the noise part in x[n] is spatially white, the output noise spectrum of the row vector

is still a constant, covering the whole spectrum. As shown in Fig. 2, the output ql [n] of each row vector is the input to a

corresponding highpass filter hl [n], l = 0,1, · · · ,M−1. These highpass filters should cover the whole bandwidth of the signal

part of the output ql [n] and therefore have the same frequency response as specified in Fig. 3b. As a result, in the ideal case,

the highpass filters will not have any effect on the signal components and all the signal components will pass through the

highpass filters without any distortion. But then the frequency components of the white noise falling into the stopband of these

highpass filters will be removed.

The output of the highpass filters is the convolution of each row vector output and its corresponding highpass filter,

z[n] =











z0[n]
...

zM−1[n]











=











q0[n]∗h0[n]
...

qM−1[n]∗hM−1[n]











, (9)

where ∗ denotes the convolution operator.

Now we consider the noise reduction effect of these filters. Each filter removes part of the noise except for that part

corresponding to the row vector with a frequency response covering the zero frequency component, which should allow all

frequencies to pass. Assume now that the size M of the array is an odd number. From Fig. 3, for the first row vector A0(Ω̂),

2/M part of the noise passes, while for Al(Ω̂), 4/M part of the noise passes, and so on. For the row vector with frequency
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response covering the zero frequency, all of the noise will pass. For the row vectors with frequency responses larger than

the zero frequency, the highpass filtering is a replica of the bands with frequency responses lower than the zero frequency.

Therefore, in the ideal case, the ratio between the total noise power after and before the processing of the M highpass filters

can be expressed as
Pbo

Pbi

=
1

M

(

1+2

(

2

M
+

4

M
+ · · ·+ M−1

M

))

, (10)

where Pbo is the total noise power at the output of the filters and Pbi is the total noise power at their input. Following the same

procedure, if the size of the array is an even number, then this ratio is given by

Pbo

Pbi

=
1

M

(

1+2

(

3

M
+

5

M
+ · · ·+ M−1

M

)

+
1

M

)

. (11)

As a result, we have

r(M) =
Pbo

Pbi

=







M2+2M−1
2M2 , if M > 1 is odd

M2+2M−2
2M2 , if M > 2 is even.

(12)

When M → ∞, noise power will be reduced by half in both cases. Since the highpass filters have no effect on the signal part,

the ratio between the total signal power and the total noise power will be improved by almost 3dB in the ideal case. For a

finite M, the improvement will be less than 3dB. For example, when M = 16, it is about 2.53dB.

Applying the inverse of the transformation matrix A−1 = AH (with size M ×M) to z[n], we obtain the estimates of the

original input sensor signals x̂m[n], m = 0,1, · · · ,M−1. In vector form, we have

x̂[n] = A−1z[n], (13)

where x̂[n] = [x̂0[n], x̂1[n], · · · , x̂M−1[n]]
T .

After going through these processing stages, there is no change in the signal part at the final output x̂l [n], l = 0,1, · · · ,M−1

compared to the original signal part in xl [n], l = 0,1, · · · ,M − 1. On the contrary, since A−1 is also unitary, the total noise

power stays the same between x̂[n] and z[n], which is almost half the total noise power in x[n]. Therefore, for a very large

array size M, we have

‖x̂[n]‖2
2 ≈ ‖s[n]‖2

2 +
1

2
‖b[n]‖2

2 . (14)

where ‖.‖2 is the l2 norm.

Based on above discussion, in terms of the total signal power to total noise power ratio (TSNR), we have the following

relationship

T SNRx̂ ≈
‖s[n]‖2

2
1
2
‖b[n]‖2

2

= 2T SNRx. (15)

So in the ideal case, for a very large M, the TSNR is almost doubled by the proposed noise reduction method. This can be

translated into better performance for different array processing applications such as beamformering and DOA estimation. In

the following section, using the DFT-based transformation matrix for ULAs, we analyse the theoretical result for two commonly

used beamformers to show the performance improvement in the ideal case.

III. ANALYSIS BASED ON THE DFT MATRIX FOR ULAS

The transformation matrix is the most important part of the system. It should have a full rank so that an inverse transform

can be applied at the end to recover the signals. Another key requirement is to make sure its row vectors have the desired

bandpass frequency responses shown in Fig. 3a. So, in general the design of the transformation matrix can be formulated as
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a constrained FIR filter design problem. This is similar to the beamspace transformation problem studied in [21]–[23], and

as pointed out there, we could design a prototype lowpass filter and then modulate it to different frequency bands by a DFT

operation or use the DFT matrix directly. In particular, the DFT matrix is unitary, which will simplify our theoretical analysis

and provide us with the crucial insight into the performance of the proposed structure.

Using the DFT matrix for an M×M transformation A, with γ = e−i(2π/M), we have

A =
1√
M

















γ0·0 γ0·1 . . . γ0·(M−1)

γ1·0 γ1·1 . . . γ1·(M−1)

...
...

. . .
...

γ(M−1)·0 γ(M−1)·1 . . . γ(M−1)·(M−1)

















. (16)

Next, an analysis of the signal spectrum based on such a transformation matrix at different stages of the proposed structure

is provided.

A. Spectrum Analysis with DFT Matrix

Now we study the input-output relationships in the frequency domain based on the DFT matrix. We first have

x̂(Ω) = A−1HAx(Ω), (17)

where x̂(Ω) and x(Ω) are the vectors holding the discrete-time Fourier transforms (DTFTs) of the time-domain signal vectors

x̂[n] and x[n], respectively, and H is an M ×M real valued diagonal matrix with its diagonal elements being the frequency

responses Hm(Ω) of the corresponding filters hm[n], m = 0,1, · · · ,M−1, i.e.,

H =

















H0(Ω) 0 . . . 0

0 H1(Ω) . . . 0

...
...

. . .
...

0 0 . . . HM−1(Ω)

















. (18)

From (17), the transfer function of the system is:

T = A−1HA =

A−1 1√
M

















H0γ0·0 · · · H0γ0·(M−1)

H1γ1·0 · · · H1γ0·(M−1)

...
. . .

...

HM−1γ(M−1)·0) · · · HM−1γ(M−1)·(M−1)

















. (19)

Then, all the elements of T (complex valued, with size M ×M) can be obtained. Considering the relationship between the

terms, we can derive a general form for the elements of T and the element at the u-th row and v-th column is given by

Tu,v =
1

M

M−1

∑
l=0

Hlγ
−luγ lv =

1

M

M−1

∑
l=0

Hlγ
l(v−u) . (20)

So we have

x̂(Ω) = Tx(Ω). (21)

We are interested in the spectrum of the noise at the output. The relationship between the input and output signals’ spectrum

is [24],

Sx̂(Ω) = TT∗(Ω)Sx(Ω). (22)
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Figure 4: Power spectrum of the output of the noise reduction system with M=16.

Sx̂(Ω) and Sx(Ω) are M×M matrices, where each matrix element represents the cross-spectral density of the two corresponding

signals. Sx(u,v) is the (u,v)-th element of Sx and it is the cross-spectral density between xu[n] and xv[n]. It can be easily proved

that the cross spectral density is equal to the DTFT of the cross correlation function of the two signals [25]. Then we have

Sx(u,v) = x∗u(Ω)xv(Ω), (23)

where the asterisk denotes the complex conjugate. Similarly, we have Sx̂(u,v) = x̂∗u(Ω)x̂v(Ω).

Now we consider the noise part. The spectral density of the white noise is σ2
b , where σ2

b is the variance of the noise. Since

the noise received by each array sensor is uncorrelated, the noise spectral density of a sensor is Sb(u,u) = σ2
b and the noise

cross spectral density between two sensors is Sb(u,v) = 0. So, the spectrum of the noise received by the array is:

Sb(Ω) = σ2
b

















1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

















= σ2
b I, (24)

where I is the M×M identity matrix. Therefore, (22) can be written as

Sb̂(Ω) = TT∗(Ω)σ2
b I. (25)

Sb̂(Ω) is an M×M complex valued matrix with real values on the diagonal. Each term of Sb̂(Ω) is given by:

Sb̂(u,v)(Ω) =
σ2

b

M

M−1

∑
l=0

Tu,lT
∗

v,l . (26)

From (20) and (26), we have:

Sb̂(u,v)(Ω) =
σ2

b

M

M−1

∑
l=0

Hl(Ω)ei 2π
M (u−v)l . (27)

The spectrum of the noise for M = 16 is shown in Fig. 4 in the ideal case. The next step is to take the inverse DTFT from

(27) to calculate the correlation function in the time domain. The inverse Fourier transform of (27) is:

Rb̂(u,v)(τ) = DTFT−1

{

σ2
b

M

M−1

∑
l=0

Hl(Ω)ei 2π
M (u−v)l

}

=
σ2

b

M

M−1

∑
l=0

ei 2π
M (u−v)lDTFT−1 {Hl(Ω)} . (28)
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where τ is an arbitrary delay and Rb̂(u,v)(τ) is the correlation function between the filtered noise at the u-th and the v-th array

elements after applying the noise reduction method. As the only term which is a function of frequency is Hl(Ω), the inverse

DTFT only applies to this part. The frequency response of a single highpass filter has the same form as that shown in Fig. 3b.

To calculate DTFT−1 {Hl(Ω)}, (28) can be written as

Rb̂(u,v)(τ) =
σ2

b

M

M−1

∑
l=0

π − Ω̂l,L

π
ei 2π

M (u−v)lei
π+Ω̂l,L

2 τ sinc(
π − Ω̂l,L

2
τ), (29)

where π is the maximum normalized frequency and Ω̂l,L is the lower bound frequency of the l-th highpass filter as was

previously shown in Fig. 3b. The correlation values regarding different time delays can be calculated from (28) and will be

used when we derive the theoretical performance results for different wideband beamformers.

IV. PERFORMANCE ANALYSIS OF THE PROPOSED METHOD FOR ADAPTIVE WIDEBAND BEAMFORMING

For wideband beamforming, a tapped delay-line (TDL) is normally employed, with Fig. 1b showing a general structure.

The TDL has a length of J and the coefficient for the m-th sensor at the j-th position of the TDL is denoted by wm, j. All J

weights at the m−th TDL form an element weight vector wm and all M element weight vectors form a MJ ×1 total weight

vector w, where

wm = [wm,0,wm,1, · · · ,wm,J−1]
T , (30)

w =
[

wT
0 ,w

T
1 , · · ·wT

M−1

]T
. (31)

The beamformer output y[n] is given by

y[n] = wT x, (32)

where the input signal vector x is defined as

x =
[

xT [n] xT [n−1] . . . xT [n−J+1]
]T

(33)

x[n− j] = [x0[n− j] x1[n− j] . . . xM−1[n− j]]T . (34)

The idea is to process the received array signal by the noise reduction method, so that the noise level in received signal

will be reduced; then, the recovered array signals with reduced noise level will be fed to the following beamformers. In the

following, two widely-used adaptive beamforming methods are briefly reviewed and the theoretical performance results are

then derived based on the proposed noise reduction method.

A. Reference Signal Based Adaptive Beamformer

The reference signal based (RSB) beamformer is normally employed when a reference signal r[n] is available, where the

weight vector of the beamformer can be adjusted to minimize the mean square error (MSE) between the reference signal and

the beamformer output y[n] [14], [15], [17], [26]. The MJ×1 optimal weight vector is given by:

wopt =ΦΦΦx
−1sd , (35)

where ΦΦΦx is the signal correlation matrix with size MJ×MJ,

ΦΦΦx = E[x∗xT ], (36)

(E{·} denotes the statistical expectation) and sd is the reference correlation vector with size MJ×1,

sd = E[x∗r0[n]], (37)
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with r0[n] being the normalized reference signal with unit power.

There are three components for each of the received sensor signals: desired signal, interference and noise. So, the signal

vector x can be decomposed into three corresponding parts:

x = xd +xi +xb. (38)

Since the desired signal, interference and noise are uncorrelated with each other, ΦΦΦx can be decomposed into three MJ ×MJ

correlation matrices corresponding to the desired signal, interference and white noise components, respectively. i.e.,

ΦΦΦx =ΦΦΦd +ΦΦΦi +ΦΦΦb. (39)

Assuming the reference signal is the same as the desired signal, sd in (37) can be simplified to

sd = E[x∗ro[n]] = E[x∗dro[n]]. (40)

More details for calculating wopt from (35) can be found in [15].

For our proposed noise reduction method, in the ideal case the directional signals (desired and interference) remain intact

and only the noise part is reduced/changed. Then, the total signal vector x̂ corresponding to x after noise reduction can be

expressed as:

x̂ = xd +xi + x̂b. (41)

where x̂b is the part of x̂ corresponding to the reduced noise after the proposed processing.

Similarly the correlation matrices ΦΦΦd and ΦΦΦi will remain the same after noise reduction, but the correlation matrix for the

noise part will be changed to ΦΦΦb̂ with size MJ ×MJ. Then, the MJ ×MJ correlation matrix ΦΦΦx̂ after noise reduction can be

expressed as:

ΦΦΦx̂ =ΦΦΦd +ΦΦΦi +ΦΦΦb̂. (42)

We can obtain ΦΦΦb̂ from (28) and partition it into M×M submatrices (each submatrix is J× J),

ΦΦΦb̂ =











ΦΦΦb̂0,0
· · · ΦΦΦb̂0,M−1

...
. . .

...

ΦΦΦb̂M−1,0
· · · ΦΦΦb̂M−1,M−1











. (43)

where ΦΦΦb̂u,v
= E[x̂∗

b̂u
x̂T

b̂v
]. The delay between two adjacent taps in a TDL is T0 =

πr
2Ω0

, where Ω0 is the centre frequency and r

is the number of quarter-wave delays in T0 at frequency Ω0. Hence the delay between the j-th and k-th tap is τ = ( j− k)T0.

Therefore the correlation value [ΦΦΦbu,v ] j,k between the noise (after the proposed processing) at the j-th tap of the u-th element

and that at the k-th tap of the v-th element is given by

[ΦΦΦbu,v ] j,k = E[b∗u, j[n]bv,k[n] = Rb(u,v)[( j− k)T0]. (44)

With the result in (29), we have

[ΦΦΦbu,v ] j,k =
σ2

b

M

M−1

∑
l=0

π − Ω̂l,L

π
ei 2π

M (u−v)lei
π+Ω̂l,L

2 ( j−k)T0 × sinc(
π − Ω̂l,L

2
( j− k)T0). (45)

Now we have all the correlation values required for calculating the wopt in (35) and the beamformer output y[n] is

y[n] = wT
opt x̂, (46)
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with its power given by

P =
1

2
E[‖y[n]‖2] =

1

2
wH

optΦΦΦx̂wopt ; . (47)

The output SINR is given by

SINR =
Pd

Pi +Pb̂

(48)

where

Pd = wH
optΦΦΦdwopt (49)

Pi = wH
optΦΦΦiwopt (50)

Pb̂ = wH
optΦΦΦb̂wopt . (51)

B. Linearly Constrained Minimum Variance Beamformer

In practice, the reference signal assumed in Section IV-A may be unavailable. However, when some information on the

DOAs as well as the bandwidth limits of the desired signal and/or the interferences is available, a linearly constrained minimum

variance (LCMV) beamformer can be employed for effective beamforming [2], [27]. The LCMV beamformer is formulated

as follows (based on the recovered signal x̂ after the proposed noise reduction method),

min
w

wHΦΦΦx̂w subject to CHw = f, (52)

where w and ΦΦΦx̂ are defined as before in Section IV-A, C is the MJ × J constraint matrix and f is the J ×1 response vector.

The solution to (52) can be obtained using the Lagrange multipliers method,

wopt =ΦΦΦ−1
x̂ C(CHΦΦΦ−1

x̂ C)−1f. (53)

Suppose the desired signal comes from the broadside, i.e., θd = 0◦. Then, C and f have a very simple form [2]. With the

optimal weight vector determined, the output SINR can be obtained as in Section IV-A.

V. EXTENSION OF THE NOISE REDUCTION METHOD FOR NLAS

As an example for a unitary matrix with a good bandpass response, we have considered the DFT matrix in the ULA case.

However, the DFT matrix is not applicable for the NLA case, since it does not have a uniform spacing, and the resultant beams

by each row vector of such a transformation will be significantly distorted.

Therefore, we use a different approach for designing the transformation matrix for NLAs by introducing a least squares

based design method here. The idea is to use an ideal unitary beam response such as those of a DFT matrix as the reference

response for the least squares method to design a prototype filter p (where [p]l = pl , l = 0, · · · ,M−1), and then we modulate

it into different subbands in a uniform way to form the required transformation matrix.

The least squares filter design method has been well studied in the past [2], [28]. Given the desired beam pattern Pd(Ω̂) and

considering d(Ω̂) as the steering vector of the NLA,

d(Ω̂) =

[

1 e
−i

d1
cTs

Ω̂ · · · e
−i

dM−1
cTs

Ω̂

]

, (54)

the problem can be solved by minimizing the sum of squares of the error between Pd(Ω̂) and the designed response P(Ω̂)

over the frequency range of interest, i.e.,

min
p

∑
Ω̂pb

|P(Ω̂)−Pd(Ω̂)|2, (55)
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Minimizing the above cost function with respect to the coefficients vector p gives the standard least squares solution,

popt = G−1
ls gls, (56)

with

Gls = ∑
Ω̂pb

d(Ω̂)dH(Ω̂),

gls = ∑
Ω̂pb

(dR(Ω̂)Pd,R(Ω̂)+dI(Ω̂)Pd,I(Ω̂)),

where dR(Ω̂) and Pd,R(Ω̂) denote the real parts of d(Ω̂) and Pd(Ω̂), and dI(Ω̂) and Pd,I(Ω̂) are their imaginary parts.

Then, we modulate p to cover the whole normalized frequency band,

Am,l = e
−i 2π

M m
dl
cTs pl , (57)

where m = 0, · · · ,M−1, l = 0, · · · ,M−1.

At this stage if the condition number of the resultant transformation matrix is high, we can use the diagonal loading

method [29] to reduce the condition number,

AL = A+αI , (58)

where α is a constant representing a small loading level.

Note that the transformation matrix obtained by the above procedure will not be unitary in general and how to design a

unitary matrix for NLAs with the required bandpass filtering effect is still an open problem for our future research. However,

we will see in the simulations part that the transformation matrix obtained from the above procedure works well to some

degree and provides a clear performance improvement.

VI. SIMULATION RESULTS

In this section, simulation results will be provided for both ULAs and NLAs, and the performance improvement by the

proposed noise reduction (NR) method for RSB and LCMV beamformers will be examined.

A. Performance of the NR Method for ULA

The simulations here are based on a 16-sensor (M = 16) ULA and the desired signal arrives from the broadside (θd = 0).

The received signals are processed by the 16×16 DFT-based transformation matrix and pass through the highpass filters. We

have assumed that the highpass filters have an ideal brick-wall shape response and to have a close approximation, linear-phase

101-tap FIR filters with a common delay of 50 samples are employed. The beam pattern of a sample row vector with respect

to signal frequency Ω and DOA angle θ before and after highpass filtering is shown in Fig. 5.

1) Effect on noise and directional signals: To see the effect of the whole system on noise, we generate spatially and

temporally white noise at the array sensors with unit power. The power spectrum density of noise before and after the

proposed noise reduction process is shown in Fig. 6a and Fig. 6b, respectively. It can be seen that the noise power has been

reduced significantly at lower frequencies, while for higher frequencies, the reduction becomes less and less. Overall the power

of noise has been reduced clearly.

For the received directional signals, as discussed there should not be any change after the proposed processing in the ideal

case. However, the response of the row vectors of the transformation is not ideal and as a result, a small amount of the
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(c) 3D beampattern of the row vector shown in Fig. 5a after highpass filtering.

Figure 5: The beam pattern of a sample row vector before and after highpass filtering (ULA, M=16).
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(a) Power spectrum density of noise before processing.
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(b) Power spectrum density after processing.

Figure 6: The power spectrum density of the spatially and temporally white noise before and after processing (M=16).

directional signals will exist at the lower sidelobe region and it will be removed by the following high pass filters. To show this

effect, a wideband signal with unit power is applied to the array from the broadside, and both the mean square error (MSE)

between the original one and the one after the proposed processing and the output power Po to the input power Pi ratio are

calculated. The results for different array size (M) are shown in Table I, where it can be seen that the effect on the directional

signal can be ignored for M > 16. We also calculated the same results for the unit power white noise and they are shown in

Table II. It can be seen that the power ratio is getting closer to the ideal case of -3dB as we increase M.

M MSE Po/Pi(dB)

10 0.0339 -0.15

16 0.0205 -0.09

20 0.0114 -0.05

30 0.0069 -0.03

40 0.0023 -0.01

Table I: MSE and power loss for the directional signal.

2) Effect on beamforming performance: Now we examine the effect of the proposed method on the performance of both

the RSB beamformer and the LCMV beamformer.

A desired bandlimited wideband signal with bandwidth of [0.3π : π] is received by the M = 16 array sensors from the

broadside. An interfering signal with the same bandwidth and a -10dB SIR arrives with a varying DOA angle. The received
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M MSE Pno/Pni(dB) ideal Pno/Pni(dB)

10 0.3988 -2.21 -2.26

16 0.4259 -2.41 -2.53

20 0.4301 -2.52 -2.62

30 0.4487 -2.65 -2.74

40 0.4637 -2.79 -2.80

Table II: MSE and power loss for white noise.
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Figure 7: SINR performance of both beamformers with and without the proposed noise reduction (NR) method (M=16, J=100).

array signals are processed by the proposed noise reduction method and then the recovered array signals with an increased

SNR are used as input to the beamformer. The input SNR is 0dB and the TDL length J = 100.

The output SINR performances of both beamformers with and without the proposed preprocessing are compared in Fig. 7a

and Fig. 7b as a function of the DOA angle of the interfering signal θi, where the theoretical value is based on the result derived

in Sec. IV. We can see that the simulation result matches the theoretical one very well. With the change of the direction of

the interfering signal, except for the region where DOA of the interfering signal is very close to the desired signal, an almost

constant improvement of about 2dB can be observed.

It is also important to analyse how the SINR performance of the proposed method varies with different input SNRs. Seven

interfering signals are applied to the system, each with a -10dB input SIR, and their DOAs are θi = 10◦,20◦,30◦,40◦,50◦,60◦

and 70◦, respectively. All the other settings are the same as before. The results are shown in Fig. 7c and Fig. 7d. As expected,

a higher output SINR has been achieved by the proposed method for both beamformers especially when the input SNR is

larger than -10dB and generally the improvement becomes larger when input SNR increases.
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Figure 8: Frequency response of the row vectors of the 15×15 designed transformation matrix for NLAs.

B. Performance of NR method for NLA

These simulations are based on an M = 15 NLA example provided in [30], with the sensor locations listed in Table III,

where λ is the wavelength associated with the normalized frequency Ω = π . The 15×15 transformation matrix is obtained by

the design procedure described in Sec. V, and its frequency response is shown in Fig. 8. The other settings are the same as

in the ULA case.

n dn/λ n dn/λ n dn/λ

1 0 6 4.09 11 6.72

2 0.81 7 4.24 12 7.58

3 1.62 8 5.00 13 8.38

4 2.42 9 5.81 14 9.19

5 3.28 10 5.96 15 10

Table III: Sensor locations for the wideband NLA example.

The results are shown in Fig. 9, and we can see that a higher output SINR is achieved by the proposed method for both

beamformers, especially when the input SNR is larger than 0dB and generally the improvement becomes larger when input

SNR increases. However, compared to the ULA case, for input SNR smaller than 0 dB, there is not as much improvement.

After checking the designed transformation matrix, we found that it is far away from being unitary and has a large condition

number, which could be the reason for such a behavior. As mentioned at the end of Sec. V, further research is needed for

designing a unitary transformation matrix for NLAs with the desired frequency responses.

C. Discussion

As can be seen from the proposed structure, we do not need any prior information about the impinging signals to reduce

the noise level and increase the overall SNR by about 3dB. However, although the SNR has been improved, the noise is not

white any more, as specified in (28), whose effect on the ultimate performance of the system can not be seen directly. That is

why we have provided both theoretical analyses and computer simulations to show that indeed by the proposed method, the

performance of the two studied beamformers has been improved.

The above result is obtained from the viewpoint of reducing the noise level of the received signals.

Actually by studying the structure further, it is realised that the proposed structure is equivalent to a traditional TDL system,

but the length of TDL is much larger. As a result, if we apply the same LCMV beamformer (with the same TDL length)



17

-20 -10 0 10 20 30
Input SNR(dB)

-10

-8

-6

-4

-2

0

2

O
ut

pu
t S

IN
R

(d
B

)

RSB with NR
RSB without NR

(a) RSB beamformer.

-20 -10 0 10 20 30
Input SNR(dB)

-10

-5

0

5

10

O
ut

pu
t S

IN
R

(d
B

)

LCMV with NR
LCMV without NR

(b) LCMV beamformer.

Figure 9: SINR performance of both beamformers with and without the proposed noise reduction method for the NLA.

to both the original set of array signals and the new set of array signals after the proposed preprocessing, the latter one will

be equivalent to a kind of LCMV beamformer but with much longer TDLs, and hence the improved performance. From this

viewpoint, the proposed method can also be considered as a low-complexity approach to adaptive beamforming. Certainly

another advantage is that the proposed preprocessing is standard and can be applied to the original array signals, whatever the

following processing (either beamforming or DOA estimation, or tracking, etc.) is. As shown in our study for DOA estimation

based on the proposed structure in [13], the improved SNR can be translated into improved DOA estimation performance too.

To show that the overall combination of the proposed noise reduction part and the following TDL-based beamformer is

equivalent to a new beamformer with a much longer TDL, i.e., the noise reduction method alongside the TDL attached can

be modelled as an equivalent TDL with a larger length, we first derive the following result:

y[n] =
M−1

∑
k=0

lhp+J−2

∑
n0=0

xk[n−n0]
M−1

∑
p=0

apk

M−1

∑
m=0

ãmp

J−1

∑
j=0

wm jhp[n0 − j], (59)

where lhp is the length of the highpass filters and [A−1]mp = ãmp.

By arranging (59), we have:

y[n] =
M−1

∑
k=0

lhp+J−2

∑
n0=0

M−1

∑
p=0

M−1

∑
m=0

J−1

∑
j=0

apkãmpwm jhp[n0 − j]xk[n−n0]. (60)

By assuming w̃k,n0
= ∑

M−1
p=0 ∑

M−1
m=0 ∑

J−1
j=0 apkãmpwm jhp[n0 − j], (59) becomes

y[n] =
M−1

∑
k=0

lhp+J−2

∑
n0=0

w̃k,n0
xk[n−n0], (61)

which is the equivalent TDL of a length Jeq = lhp + J−1 for the noise reduction method combined with a TDL of length J.
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Figure 10: SINR performance of both beamformers with NR method and without NR with equivalent length, lhp = 101.

The question here is, since the noise reduction method can be modeled as a TDL, which one of the following gives us a better

performance: using the noise reduction method and a TDL with length J or using a larger TDL with length Jeq = lhp + J−1.

We may think the latter one will give a better performance, although it may have the highest implementation complexity,

since a globally optimum solution can be found without constraints imposed by the proposed specific noise reduction process.

However, the real picture is much complicated, due to numerical issues involved in calculating the optimum beamforming

coefficients based on inversion of correlation matrices of difference sizes. The longer the TDL, the larger the dimension of the

matrix involved and the more likely it will cause additional errors in performing matrix inversion.

To show this, again we consider the two types of TDL-based beamformers, i.e., the RSB and the LCMV beamformers. The

SINR performance of both beamformers with the noise reduction method and without the method with the equivalent length

Jeq is shown in Fig. 10. All the simulation conditions are the same as in Section VI-A. When the length of the beamformer is

short (J=10 and equivalent of Jeq=110) as in Fig. 10a and Fig. 10b, the performance of the beamformers without preprocessing

is better, as expected in theory. When the length of the beamformers is larger (J=50 and equivalent of Jeq=150) as in Fig. 10c

and Fig. 10d, the performance of the beamformers with preprocessing is better.

A direct advantage of the proposed noise reduction preprocessing is in reducing the computational complexity of the

beamformers. The computational complexity of the proposed noise reduction method (including the beamforming part), the

directly implemented RSB and LCMV beamformers is presented in Table IV, where N is the number of signal samples at

each sensor. As J ≪ Jeq, the complexity with the proposed method is much smaller than the direct implementation case.
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Algorithm without NR with NR

RSB O(M3J3
eq)+M2J2

eqN +M2J2
eq +MJeqN O(M3J3)+M2J2N +M2J2 +MJN +2M2N +Ml2

hp +MNlhp

LCMV O(M3J3
eq)+O(J3

eq)+2M2J3
eq +2MJ3

eq +M2J2
eqN +MJ2

eq O(M3J3)+O(J3)+2M2J3 +2MJ3 +M2J2N +MJ2

+2M2N +Ml2
hp +MNlhp

Table IV: Computational complexity of the noise reduction based implementation, the RSB and LCMV beamformers.

VII. CONCLUSION

A method for mitigating the effect of white noise without affecting the directional signals in wideband arbitrary linear arrays

has been introduced. With the proposed method, a maximum 3dB improvement in total signal power to total noise power ratio

(TSNR) can be achieved in the ideal case. A detailed study of the proposed method has been performed and the effect of

the method on the spectra of both the directional signals and in particular white noise is analysed. The increased TSNR can

be translated into performance improvement in various array signal processing applications and as an example, its effect on

beamforming is investigated in detail based on two representative beamformers: the RSB and the LCMV beamformers. As

demonstrated by both theoretical analysis and simulation results, a clear improvement in performance in terms of output SINR

has been achieved.
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