49 research outputs found

    RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    Get PDF
    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later matura- tion. Specifically, an activator of actin polymerization, the Rac1 GEF ÎÂČ-PIX, drives spine pre- cursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synap- ses. Our observations demonstrate that specific combinations of RhoGTPase regulatory pro- teins temporally balance RhoGTPase activity during post-synaptic spine development

    Cell Cycle Analysis of Hematopoietic Stem and Progenitor Cells by Multicolor Flow Cytometry

    No full text
    Maintenance of hematopoietic stem cell (HSC) quiescence is critical for self-renewal and differentiation into mature lineages. Therefore, the ability to reliably detect abnormal HSC cycling is essential for experiments that seek to investigate abnormalities of HSC function. The ability to reproducibly evaluate cell cycle status in a rare cell subset requires careful optimization of multiple parameters during cell preparation and sample processing. Here, we describe a method where data acquisition parameters and fluorochrome combination for long-term HSC staining have been specifically designed for concurrent use with DAPI and Ki-67 antibodies. (c) 2018 by John Wiley & Sons, Inc

    Role of dysbindin in dopamine receptor trafficking and cortical GABA function

    No full text
    Dysbindin has been implicated in the pathogenesis of schizophrenia, but little is known about how dysbindin affects neuronal function in the circuitry underlying psychosis and related behaviors. Using a dysbindin knockout line (dys−/−) derived from the natural dysbindin mutant Sandy mice, we have explored the role of dysbindin in dopamine signaling and neuronal function in the prefrontal cortex (PFC). Combined cell imaging and biochemical experiments revealed a robust increase in the dopamine receptor D2, but not D1, on cell surface of neurons from dys−/− cortex. This was due to an enhanced recycling and insertion, rather than reduced endocytosis, of D2. Disruption of dysbindin gene resulted in a marked decrease in the excitability of fast-spiking (FS) GABAergic interneurons in both PFC and striatum. Dys−/− mice also exhibited a decreased inhibitory input to pyramidal neurons in layer V of PFC. The increased D2 signaling in dys−/− FS interneurons was associated with a more pronounced increase in neuronal firing in response to D2 agonist, compared to that in wild-type interneurons. Taken together, these results suggest that dysbindin regulates PFC function by facilitating D2-mediated modulation of GABAergic function
    corecore