161 research outputs found

    Initiation of in vitro reverse transcription from tRNALys3 on HIV-1 or HIV-2 RNAs by both type 1 and 2 reverse transcriptases

    Get PDF
    AbstractHIV reverse transcription is initiated from a cellular tRNA partially associated with the retroviral genome. Here we studied homologous HIV-2 cDNA synthesis using natural or synthetic primers. With natural tRNALys3, synthesis of early products comprising nucleotides +5 to +7 preceded the elongation step leading to synthesis of (−) strong-stop cDNA. In the presence of a poly(A)·oligo(dT) trap, no full-length product was observed while early products were still present, showing a transition between initiation and elongation. With DNA primers only an unspecific elongation was found. Our data show a similar mechanism of reverse transcription initiation by HIV-1 and HIV-2 reverse transcriptases. Furthermore, using a heterologous system we found that HIV-1 RNA, in contrast to data reported in the literature, was an excellent template for HIV-2 reverse transcriptase

    HIV-1 integrase crosslinked oligomers are active in vitro

    Get PDF
    The oligomeric state of active human immunodeficiency virus type 1 (HIV-1) integrase (IN) has not been clearly elucidated. We analyzed the activity of the different purified oligomeric forms of recombinant IN obtained after stabilization by platinum crosslinking. The crosslinked tetramer isolated by gel chromatography was able to catalyze the full-site integration of the two viral LTR ends into a target DNA in vitro, whereas the isolated dimeric form of the enzyme was involved in the processing and integration of only one viral end. Accurate concerted integration by IN tetramers was confirmed by cloning and sequencing. Kinetic studies of DNA-integrase complexes led us to propose a model explaining the formation of an active complex. Our data suggest that the tetrameric IN bound to the viral DNA ends is the minimal complex involved in the concerted integration of both LTRs and should be the oligomeric form targeted by future inhibitors

    Small-angle X-ray characterization of the nucleoprotein complexes resulting from DNA-induced oligomerization of HIV-1 integrase

    Get PDF
    HIV-1 integrase (IN) catalyses integration of a DNA copy of the viral genome into the host genome. Specific interactions between retroviral IN and long terminal repeats (LTR) are required for this insertion. To characterize quantitatively the influence of the determinants of DNA substrate specificity on the oligomerization status of IN, we used the small-angle X-ray scattering (SAXS) technique. Under certain conditions in the absence of ODNs IN existed only as monomers. IN preincubation with specific ODNs led mainly to formation of dimers, the relative amount of which correlated well with the increase in the enzyme activity in the 3′-processing reaction. Under these conditions, tetramers were scarce. Non-specific ODNs stimulated formation of catalytically inactive dimers and tetramers. Complexes of monomeric, dimeric and tetrameric forms of IN with specific and non-specific ODNs had varying radii of gyration (R(g)), suggesting that the specific sequence-dependent formation of IN tetramers can probably occur by dimerization of two dimers of different structure. From our data we can conclude that the DNA-induced oligomerization of HIV-1 IN is probably of importance to provide substrate specificity and to increase the enzyme activity

    Buildup from birth onward of short telomeres in human hematopoietic cells

    Get PDF
    Telomere length (TL) limits somatic cell replication. However, the shortest among the telomeres in each nucleus, not mean TL, is thought to induce replicative senescence. Researchers have relied on Southern blotting (SB), and techniques calibrated by SB, for precise measurements of TL in epidemiological studies. However, SB provides little information on the shortest telomeres among the 92 telomeres in the nucleus of human somatic cells. Therefore, little is known about the accumulation of short telomeres with age, or whether it limits the human lifespan. To fill this knowledge void, we used the Telomere-Shortest-Length-Assay (TeSLA), a method that tallies and measures single telomeres of all chromosomes. We charted the age-dependent buildup of short telomeres (&lt;3 kb) in human hematopoietic cells from 334 individuals (birth-89 years) from the general population, and 18 patients with dyskeratosis congenita-telomere biology disorders (DC/TBDs), whose hematopoietic cells have presumably reached or are close to their replicative limit. For comparison, we also measured TL with SB. We found that in hematopoietic cells, the buildup of short telomeres occurs in parallel with the shortening with age of mean TL. However, the proportion of short telomeres was lower in octogenarians from the general population than in patients with DC/TBDs. At any age, mean TL was longer and the proportion of short telomeres lower in females than in males. We conclude that though converging to the TL-mediated replicative limit, hematopoietic cell telomeres are unlikely to reach this limit during the lifespan of most contemporary humans.</p

    Propagation of beta/gamma rhythms in the cortico-basal ganglia circuits of the Parkinsonian rat

    Get PDF
    Much of the motor impairment associated with Parkinson’s disease is thought to arise from pathological activity in the networks formed by the basal ganglia (BG) and motor cortex. To evaluate several hypotheses proposed to explain the emergence of pathological oscillations in Parkinsonism, we investigated changes to the directed connectivity in BG networks following dopamine depletion. We recorded local field potentials (LFPs) in the cortex and basal ganglia of rats rendered Parkinsonian by injection of 6-hydroxydopamine (6-OHDA) and in dopamine-intact controls. We performed systematic analyses of the networks using a novel tool for estimation of directed interactions (Non-Parametric Directionality, NPD). Additionally, we used a ‘conditioned’ version of the NPD analysis which reveals the dependence of the correlation between two signals upon a third reference signal. We find evidence of the dopamine dependency of both low beta (14-20 Hz) and high beta/low gamma (20-40 Hz) directed interactions within the network. Notably, 6-OHDA lesions were associated with enhancement of the cortical “hyper-direct” connection to the subthalamic nucleus (STN) and its feedback to the cortex and striatum. We find that pathological beta synchronization resulting from 6-OHDA lesioning is widely distributed across the network and cannot be located to any individual structure. Further, we provide evidence that high beta/gamma oscillations propagate through the striatum in a pathway that is independent of STN. Rhythms at high beta/gamma show susceptibility to conditioning that indicates a hierarchical organization when compared to low beta. These results further inform our understanding of the substrates for pathological rhythms in salient brain networks in Parkinsonism

    RNA editing in plant mitochondria, cytoplasmic male sterility and plant breeding

    Get PDF
    RNA editing in plant mitochondria is a post-transcriptional process involving the partial change of C residues into U. These C to U changes lead to the synthesis of proteins with an amino acid sequence different to that predicted from the gene. Proteins produced from edited mRNAs are more similar to those from organisms where this process is absent. This biochemical process involves cytidine deamination. The cytoplasmic male sterility (CMS) phenotype generated by the incompatibility between the nuclear and the mitochondrial genomes is an important agronomical trait which prevents inbreeding and favors hybrid production. The hypothesis that RNA editing leads to functional proteins has been proposed. This hypothesis was tested by constructing transgenic plants expressing a mitochondrial protein translated from unedited mRNA. The transgenic "unedited" protein was addressed to the mitochondria leading to the appearance of mitochondrial dysfunction and generating the male sterile phenotype in transgenic tobacco plants. Male sterile plants were also obtained by expressing specifically a bacterial ribonuclease in the anthers. The economical benefits of artificially engineered male-sterile plants or carrying the (native) spontaneous CMS phenotype, implies the restoration to obtain fertile hybrids that will be used in agriculture. Restoration to fertility of transgenic plants was obtained either by crossing male-sterile plants carrying the "unedited" mRNA with plants carrying the same RNA, but in the antisense orientation or, in the case of plants expresing the ribonuclease, by crossing male-sterile plants with plants expressing an inhibitor specific of this enzyme

    Measuring Directed Functional Connectivity Using Non-Parametric Directionality Analysis : Validation and Comparison with Non-Parametric Granger Causality

    Get PDF
    BACKGROUND: 'Non-parametric directionality' (NPD) is a novel method for estimation of directed functional connectivity (dFC) in neural data. The method has previously been verified in its ability to recover causal interactions in simulated spiking networks in Halliday et al. (2015). METHODS: This work presents a validation of NPD in continuous neural recordings (e.g. local field potentials). Specifically, we use autoregressive models to simulate time delayed correlations between neural signals. We then test for the accurate recovery of networks in the face of several confounds typically encountered in empirical data. We examine the effects of NPD under varying: a) signal-to-noise ratios, b) asymmetries in signal strength, c) instantaneous mixing, d) common drive, e) data length, and f) parallel/convergent signal routing. We also apply NPD to data from a patient who underwent simultaneous magnetoencephalography and deep brain recording. RESULTS: We demonstrate that NPD can accurately recover directed functional connectivity from simulations with known patterns of connectivity. The performance of the NPD measure is compared with non-parametric estimators of Granger causality (NPG), a well-established methodology for model-free estimation of dFC. A series of simulations investigating synthetically imposed confounds demonstrate that NPD provides estimates of connectivity that are equivalent to NPG, albeit with an increased sensitivity to data length. However, we provide evidence that: i) NPD is less sensitive than NPG to degradation by noise; ii) NPD is more robust to the generation of false positive identification of connectivity resulting from SNR asymmetries; iii) NPD is more robust to corruption via moderate amounts of instantaneous signal mixing. CONCLUSIONS: The results in this paper highlight that to be practically applied to neural data, connectivity metrics should not only be accurate in their recovery of causal networks but also resistant to the confounding effects often encountered in experimental recordings of multimodal data. Taken together, these findings position NPD at the state-of-the-art with respect to the estimation of directed functional connectivity in neuroimaging

    The Parkinsonian subthalamic network: measures of power, linear, and non-linear synchronization and their relationship to L-DOPA treatment and OFF state motor severity

    Get PDF
    In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5–12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15–20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics
    corecore