79 research outputs found

    Robust detection of quasi-periodic variability: A HAWK-I mini survey of late-T dwarfs

    Get PDF
    We present HAWK-I J-band light curves of five late-type T dwarfs (T6.5-T7.5) with a typical duration of four hours, and investigate the evidence for quasi-periodic photometric variability on intra-night timescales. Our photometry reaches precisions in the range 7-20 mmag, after removing instrumental systematics that correlate with sky background, seeing and airmass. Based upon a Lomb-Scargle periodogram analysis, the latest object in the sample - ULAS J2321 (T7.5) - appears to show quasi-periodic variability with a period of 1.64 hours and an amplitude of 3 mmag. Given the low amplitude of variability and presence of systematics in our lightcurves, we discuss a Bayesian approach to robustly determine if quasi-periodic variability is present in a lightcurve affected by red noise. Using this approach, we conclude that the evidence for quasi-periodic variability in ULAS J2321 is not significant. As a result, we suggest that studies which identify quasi-periodic variables using the false alarm probability from a Lomb-Scargle periodogram are likely to over-estimate the number of variable objects, even if field stars are used to set a higher false alarm probability threshold. Instead we argue that a hybrid approach combining a false alarm probability cut, followed by Bayesian model selection, is necessary for robust identification of quasi-periodic variability in lightcurves with red noise

    Spectroscopically confirmed brown dwarf members of Coma Berenices and the Hyades

    Get PDF
    We have obtained low- and medium-resolution spectra of nine brown dwarf candidate members of Coma Berenices and the Hyades using SpEX on the NASA InfraRed Telescope Facility and Long Slit Intermediate Resolution Infrared Spectrograph on the William Herschel Telescope. We conclude that seven of these objects are indeed late M or early L dwarfs, and that two are likely members of Coma Berenices and four of the Hyades. Two objects, cbd40 and Hy3, are suggested to be field L dwarfs, although there is also a possibility that Hy3 is an unresolved binary belonging to the cluster. These objects have masses between 71 and 53MJup, close to the hydrogen-burning boundary for these clusters; however, only an optical detection of lithium can confirm if they are truly substellar

    Characterizing the i-band variability of YSOs over six orders of magnitude in time-scale

    Get PDF
    We present an i-band photometric study of over 800 young stellar objects in the OB association Cep OB3b, which samples time-scales from one minute to 10 yr. Using structure functions we show that on all time-scales (τ) there is a monotonic decrease in variability from Class I to Class II through the transition disc (TD) systems to Class III, i.e. the more evolved systems are less variable. The Class Is show an approximately power-law increase (τ0.8) in variability from time-scales of a few minutes to 10 yr. The Class II, TDs, and Class III systems show a qualitatively different behaviour with most showing a power-law increase in variability up to a time-scale corresponding to the rotational period of the star, with little additional variability beyond that time-scale. However, about a third of the Class IIs shows lower overall variability, but their variability is still increasing at 10 yr. This behaviour can be explained if all Class IIs have two primary components to their variability. The first is an underlying roughly power-law variability spectrum, which evidence from the infrared suggests is driven by accretion rate changes. The second component is approximately sinusoidal and results from the rotation of the star. We suggest that the systems with dominant longer time-scale variability have a smaller rotational modulation either because they are seen at low inclinations or have more complex magnetic field geometries. We derive a new way of calculating structure functions for large simulated data sets (the ‘fast structure function’), based on fast Fourier transforms

    Measuring the initial-final mass relation using wide double white dwarf binaries from Gaia DR3

    Get PDF
    The initial-final mass relation (IFMR) maps the masses of main-sequence stars to their white dwarf descendants. The most common approach to measure the IFMR has been to use white dwarfs in clusters. However, it has been shown that wide double white dwarfs can also be used to measure the IFMR using a Bayesian approach. We have observed a large sample of 90 Gaia double white dwarfs using FORS2 on the VLT. Considering 52 DA + DA, DA + DC, and DC + DC pairs, we applied our extended Bayesian framework to probe the IFMR in exquisite detail. Our monotonic IFMR is well constrained by our observations for initial masses of 1–5 M⊙, with the range of 1–4 M⊙ mostly constrained to a precision of 0.03 M⊙ or better. We add an important extension to the framework, using a Bayesian mixture-model to determine the IFMR robustly in the presence of systems departing from single star evolution. We find a large but uncertain outlier fraction of 59 ± 21 per cent, with outlier systems requiring an additional 0.70_{-0.22}^{+0.40} Gyr uncertainty in their cooling age differences. However, we find that this fraction is dominated by a few systems with massive components near 0.9 M⊙, where we are most sensitive to outliers, but are also able to establish four systems as merger candidates

    Empirical isochrones and relative ages for young stars, and the radiative-convective gap

    Get PDF
    We have selected pre-main-sequence (PMS) stars in 12 groups of notional ages ranging from 1 to 35 Myr, using heterogeneous membership criteria. Using these members we have constructed empirical isochrones in V, V−I colour–magnitude diagrams. This allows us to identify clearly the gap between the radiative main sequence and the convective PMS (the R–C gap). We follow the evolution of this gap with age and show that it can be a useful age indicator for groups less than ≃15 Myr old. We also observe a reduction in absolute spreads about the sequences with age. Finally, the empirical isochrones allow us to place the groups in order of age, independently of theory. The youngest groups can be collated into three sets of similar ages. The youngest set is the ONC, NGC 6530 and IC 5146 (nominally 1 Myr); next Cep OB3b, NGC 2362, λ Ori and NGC 2264 (nominally 3 Myr); and finally σ Ori and IC 348 (nominally 4–5 Myr). This suggests Cep OB3b is younger than previously thought, and IC 348 older. For IC 348 the stellar rotation rate distribution and fraction of stars with discs imply a younger age than we derive. We suggest this is because of the absence of O-stars in this cluster, whose winds and/or ionizing radiation may be an important factor in the removal of discs in other clusters

    The donor star radial velocity curve in the cataclysmic variable GY Cnc confirms white dwarf eclipse modelling mass

    Get PDF
    A large number of white dwarf and donor masses in cataclysmic variables have been found via modelling the primary eclipse, a method that relies on untested assumptions. Recent measurements of the mass of the white dwarf in the cataclysmic variable GY Cnc, obtained via modelling its ultraviolet spectrum, conflict with the mass obtained via modelling the eclipse light curve. Here we measure the radial velocity of the absorption lines from the donor star in GY Cnc to be Kabs = 280 ± 2 km s−1, in excellent agreement with the prediction based on the masses derived from modelling the eclipse light curve. It is possible that the white dwarf mass derived from the ultraviolet spectrum of GY Cnc is affected by the difficulty of disentangling the white dwarf spectrum from the accretion disc spectrum

    The direct detection of the irradiated brown dwarf in the white dwarf - brown dwarf binary SDSS J141126.20+200911.1

    Get PDF
    We have observed the eclipsing, post-common envelope white dwarf–brown dwarf binary, SDSS141126.20+200911.1, in the near-IR with the HAWK-I imager, and present here the first direct detection of the dark side of an irradiated brown dwarf in the H band, and a tentative detection in the Ks band. Our analysis of the light curves indicates that the brown dwarf is likely to have an effective temperature of 1300 K, which is not consistent with the effective temperature of 800 K suggested by its mass and radius. As the brown dwarf is already absorbing almost all the white dwarf emission in the Ks band, we suggest that this inconsistency may be due to the UV-irradiation from the white dwarf inducing an artificial brightening in the Ks band, similar to that seen for the similar system WD0137-349B, suggesting this brightening may be characteristic of these UV-irradiated binaries

    A pulsating white dwarf in an eclipsing binary

    Get PDF
    White dwarfs are the burnt-out cores of Sun-like stars and are the fate of 97 per cent of the stars in our Galaxy. The internal structure and composition of white dwarfs are hidden by their high gravities, which causes all elements apart from the lightest ones to settle out of their atmospheres. The most direct method of probing the inner structure of stars and white dwarfs in detail is via asteroseismology. Here we present a pulsating white dwarf in an eclipsing binary system, enabling us to place extremely precise constraints on the mass and radius of the white dwarf from the lightcurve, independent of the pulsations. This 0.325-solar-mass white dwarf—one member of the SDSS J115219.99+024814.4 system—will serve as a powerful benchmark with which to constrain empirically the core composition of low-mass stellar remnants and to investigate the effects of close binary evolution on the internal structure of white dwarfs

    SS Cancri: the shortest modulation-period Blazhko RR Lyrae

    Get PDF
    In order to study the Blazhko effect, we characterise the modulation of the RR Lyrae star SS Cancri, which has been reported to have the shortest modulation Blazhko period. B, V and R band data have been acquired. The pulsation period is 0.36731 +- 0.00004 d. No significant change in the period over the last 80 years is observed. We measure a periodic variation in the light curve maxima, which has a period of 5.313 +- 0.018 d and an amplitude of 0.016 +- 0.003 mag. The best model that describes the Blazhko effect is the resonance coupling between a low and a high order radial mode
    • …
    corecore