13 research outputs found

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.

    Get PDF
    BACKGROUND The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. METHODS For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. FINDINGS Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. INTERPRETATION COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. FUNDING Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization

    Brief oral health promotion intervention among parents of young children to reduce early childhood dental decay

    Get PDF
    Background: Severe untreated dental decay affects a child’s growth, body weight, quality of life as well as cognitive development, and the effects extend beyond the child to the family, the community and the health care system. Early health behavioural factors, including dietary practices and eating patterns, can play a major role in the initiation and development of oral diseases, particularly dental caries. The parent/caregiver, usually the mother, has a critical role in the adoption of protective health care behaviours and parental feeding practices strongly influence children’s eating behaviours. This study will test if an early oral health promotion intervention through the use of brief motivational interviewing (MI) and anticipatory guidance (AG) approaches can reduce the incidence of early childhood dental decay and obesity. Methods: The study will be a randomised controlled study with parents and their new-born child/ren who are seen at 6–12 weeks of age by a child/community health nurse. Consenting parents will complete a questionnaire on oral health knowledge, behaviours, self-efficacy, oral health fatalism, parenting stress, prenatal and peri-natal health and socio-demographic factors at study commencement and at 12 and 36 months. Each child–parent pair will be allocated to an intervention or a standard care group, using a computer-generated random blocks. The standard group will be managed through the standard early oral health screening program; “lift the lip”. The intervention group will be provided with tailored oral health counselling by oral health consultants trained in MI and AG. Participating children will be examined at 24, and 36 months for the occurrence of dental decay and have their height and weight recorded. Dietary information obtained from a food frequency chart will be used to determine food and dietary patterns. Data analysis will use intention to treat and per protocol analysis and will use tests of independent proportions and means. Multivariate statistical tests will also be used to take account of socio-economic and demographic factors in addition to parental knowledge, behaviour, self-efficacy, and parent/child stress. Discussion: The study will test the effects of an oral health promotion intervention to affect oral health and general health and have the potential to demonstrate the "common risk factor" approach to health promotion.Peter Arrow, Joseph Raheb and Margaret Mille

    Twenty actions for a “good anthropocene”—perspectives from early-career conservation professionals

    No full text
    Humans are now recognized as the main drivers of environmental change, leaving the future of our planet dependent on human action or inaction. Although the outlook of our planet is often depicted in a “doom and gloom” manner due to recent troubling environmental trends, we suggest that a “good Anthropocene” (in which human quality of life may be maintained or improved without cost to the environment) is attainable if we engage in adaptive, multi-disciplinary actions capable of addressing the socio-ecological issues of today and tomorrow. Early-career conservation scientists and practitioners have an unmatched understanding of novel technologies and social connectivity and, as those left with the ever-growing responsibility to be the problem solvers of the attributed increasing environmental consequences of living in the Anthropocene, their perspectives on steps towards a good Anthropocene are valuable. Here we present a list of 20 actions derived by early-career conservation scientists and practitioners for conservationists to help achieve a good Anthropocene that utilize the social connectivity and technology of today. Central to these actions are the notions that multi-, inter-, and trans-disciplinary collaboratives that embrace diverse world views need to be integrated into decision-making processes; training and outreach platforms need to communicate both environmental challenges and solutions broadly; and conservation successes need to be acknowledged and disseminated in a forward-looking, adaptive capacity. Together the 20 actions identified here reinforce the underlying paradigm shift that must accompany living in the Anthropocene, given that biodiversity and healthy ecosystems are requisite for sustained human life. By sharing this list of actions, we look to promote positive socio-environmental changes towards the collective goal of achieving a good Anthropocene

    Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data

    Get PDF
    Background Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are typically transmitted via respiratory droplets, are leading causes of invasive diseases, including bacteraemic pneumonia and meningitis, and of secondary infections subsequent to post-viral respiratory disease. The aim of this study was to investigate the incidence of invasive disease due to these pathogens during the early months of the COVID-19 pandemic. Methods In this prospective analysis of surveillance data, laboratories in 26 countries and territories across six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae, and N meningitidis from Jan 1, 2018, to May, 31, 2020, as part of the Invasive Respiratory Infection Surveillance (IRIS) Initiative. Numbers of weekly cases in 2020 were compared with corresponding data for 2018 and 2019. Data for invasive disease due to Streptococcus agalactiae, a non-respiratory pathogen, were collected from nine laboratories for comparison. The stringency of COVID-19 containment measures was quantified using the Oxford COVID-19 Government Response Tracker. Changes in population movements were assessed using Google COVID-19 Community Mobility Reports. Interrupted time-series modelling quantified changes in the incidence of invasive disease due to S pneumoniae, H influenzae, and N meningitidis in 2020 relative to when containment measures were imposed. Findings 27 laboratories from 26 countries and territories submitted data to the IRIS Initiative for S pneumoniae (62 434 total cases), 24 laboratories from 24 countries submitted data for H influenzae (7796 total cases), and 21 laboratories from 21 countries submitted data for N meningitidis (5877 total cases). All countries and territories had experienced a significant and sustained reduction in invasive diseases due to S pneumoniae, H influenzae, and N meningitidis in early 2020 (Jan 1 to May 31, 2020), coinciding with the introduction of COVID-19 containment measures in each country. By contrast, no significant changes in the incidence of invasive S agalactiae infections were observed. Similar trends were observed across most countries and territories despite differing stringency in COVID-19 control policies. The incidence of reported S pneumoniae infections decreased by 68% at 4 weeks (incidence rate ratio 0·32 [95% CI 0·27–0·37]) and 82% at 8 weeks (0·18 [0·14–0·23]) following the week in which significant changes in population movements were recorded. Interpretation The introduction of COVID-19 containment policies and public information campaigns likely reduced transmission of S pneumoniae, H influenzae, and N meningitidis, leading to a significant reduction in life-threatening invasive diseases in many countries worldwide
    corecore