111 research outputs found

    Histocompatibility: Clarifying Fusion Confusion

    Get PDF
    SummaryIn the colonial tunicate Botryllus schlosseri, a co-dominant trait determines the capacity of adjacent colonies to fuse or reject. An innovative RNA sequencing approach has now identified the gene that predicts the outcomes of this naturally occurring allograft

    A Soluble Immune Effector Binds Both Fungi and Bacteria via Separate Functional Domains

    Get PDF
    The gut microbiome of animals consists of diverse microorganisms that include both prokaryotes and eukaryotes. Complex interactions occur among these inhabitants, as well as with the immune system of the host, and profoundly influence the overall health of both the host and its microbial symbionts. Despite the enormous importance for the host to regulate its gut microbiome, the extent to which animals generate immune-related molecules with the capacity to directly influence polymicrobial interactions remains unclear. The urochordate, Ciona robusta, is a model organism that has been adapted to experimental studies of host/microbiome interactions. Ciona variable-region containing chitin-binding proteins (VCBPs) are innate immune effectors, composed of immunoglobulin (Ig) variable regions and a chitin-binding domain (CBD) and are expressed in high abundance in the gut. It was previously shown that VCBP-C binds bacteria and influences both phagocytosis by granular amoebocytes and biofilm formation via its Ig domains. We show here that the CBD of VCBP-C independently recognizes chitin molecules present in the cell walls, sporangia (spore-forming bodies), and spores of a diverse set of filamentous fungi isolated from the gut of Ciona. To our knowledge, this is the first description of a secreted Ig-containing immune molecule with the capacity to directly promote transkingdom interactions through simultaneous binding by independent structural domains and could have broad implications in modulating the establishment, succession, and homeostasis of gut microbiomes

    Genomic complexity of the variable region-containing chitin-binding proteins in amphioxus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The variable region-containing chitin-binding proteins (VCBPs) are found in protochordates and consist of two tandem immunoglobulin variable (V)-type domains and a chitin-binding domain. We previously have shown that these polymorphic genes, which primarily are expressed in the gut, exhibit characteristics of immune genes. In this report, we describe VCBP genomic organization and characterize adjacent and intervening genetic features which may influence both their polymorphism and complex transcriptional repertoire.</p> <p>Results</p> <p>VCBP genes 1, 2, 4, and 5 are encoded in a single contiguous gene-rich chromosomal region and VCBP3 is encoded in a separate locus. The VCBPs exhibit extensive haplotype variation, including copy number variation (CNV), indel polymorphism and a markedly elevated variation in repeat type and density. In at least one haplotype, inverted repeats occur more frequently than elsewhere in the genome. Multi-animal cDNA screening, as well as transcriptional profilingusing a novel transfection system, suggests that haplotype-specific transcriptional variants may contribute to VCBP genetic diversity.</p> <p>Conclusion</p> <p>The availability of the <it>Branchiostoma floridae </it>genome (Joint Genome Institute, Brafl1), along with BAC and PAC screening and sequencing described here, reveal that the relatively limited number of VCBP genes present in the amphioxus genome exhibit exceptionally high haplotype variation. These VCBP haplotypes contribute a diverse pool of allelic variants, which includes gene copy number variation, pseudogenes, and other polymorphisms, while contributing secondary effects on gene transcription as well.</p

    Novel genes dramatically alter regulatory network topology in amphioxus

    Get PDF
    Domain rearrangements in the innate immune network of amphioxus suggests that domain shuffling has shaped the evolution of immune systems

    Developmental and tissue-specific expression of NITRs

    Get PDF
    Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14 families are encoded on zebrafish chromosomes 7 and 14. Herein, we demonstrate the expression of multiple NITR genes in the zebrafish ovary and during embryogenesis. All 14 families of zebrafish NITRs are expressed in hematopoietic kidney, spleen and intestine as are immunoglobulin and T cell antigen receptors. Furthermore, all 14 families of NITRs are shown to be expressed in the lymphocyte lineage, but not in the myeloid lineage, consistent with the hypothesis that NITRs function as NKRs. Sequence analyses of NITR amplicons identify known alleles and reveal additional alleles within the nitr1, nitr2, nitr3, and nitr5 families, reflecting the recent evolution of this gene family

    EVOLUTION OF ANTIGEN BINDING RECEPTORS

    Full text link
    This review addresses issues related to the evolution of the complex multigene families of antigen binding receptors that function in adaptive immunity. Advances in molecular genetic technology now permit the study of immunoglobulin (Ig) and T cell receptor (TCR) genes in many species that are not commonly studied yet represent critical branch points in vertebrate phylogeny. Both Ig and TCR genes have been defined in most of the major lineages of jawed vertebrates, including the cartilaginous fishes, which represent the most phylogenetically divergent jawed vertebrate group relative to the mammals. Ig genes in cartilaginous fish are encoded by multiple individual loci that each contain rearranging segmental elements and constant regions. In some loci, segmental elements are joined in the germline, i.e. they do not undergo genetic rearrangement. Other major differences in Ig gene organization and the mechanisms of somatic diversification have occurred throughout vertebrate evolution. However, relating these changes to adaptive immune function in lower vertebrates is challenging. TCR genes exhibit greater sequence diversity in individual segmental elements than is found in Ig genes but have undergone fewer changes in gene organization, isotype diversity, and mechanisms of diversification. As of yet, homologous forms of antigen binding receptors have not been identified in jawless vertebrates; however, acquisition of large amounts of structural data for the antigen binding receptors that are found in a variety of jawed vertebrates has defined shared characteristics that provide unique insight into the distant origins of the rearranging gene systems and their relationships to both adaptive and innate recognition processes

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences
    corecore