366 research outputs found

    Spin measurements for 147Sm+n resonances: Further evidence for non-statistical effects

    Full text link
    We have determined the spins J of resonances in the 147Sm(n,gamma) reaction by measuring multiplicities of gamma-ray cascades following neutron capture. Using this technique, we were able to determine J values for all but 14 of the 140 known resonances below En = 1 keV, including 41 firm J assignments for resonances whose spins previously were either unknown or tentative. These new spin assignments, together with previously determined resonance parameters, allowed us to extract separate level spacings and neutron strength functions for J = 3 and 4 resonances. Furthermore, several statistical test of the data indicate that very few resonances of either spin have been missed below En = 700eV. Because a non-statistical effect recently was reported near En = 350 eV from an analysis of 147Sm(n,alpha) data, we divided the data into two regions; 0 < En < 350 eV and 350 < En < 700 eV. Using neutron widths from a previous measurement and published techniques for correcting for missed resonances and for testing whether data are consistent with a Porter-Thomas distribution, we found that the reduced-neutron-width distribution for resonances below 350 eV is consistent with the expected Porter-Thomas distribution. On the other hand, we found that reduced-neutron-width data in the 350 < En < 700 eV region are inconsistent with a Porter-Thomas distribution, but in good agreement with a chi-squared distribution having two or more degrees of freedom. We discuss possible explanations for these observed non-statistical effects and their possible relation to similar effects previously observed in other nuclides.Comment: 40 pages, 13 figures, accepted by Phys. Rev.

    Electromagnetic Calorimeter for HADES

    Full text link
    We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron rejection, resulting from simulations based on the test measurements, is better than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.Comment: 40 pages, 38 figures version2 - the time schedule added, information about PMTs in Sec.III update

    Fast-Neutron Activation of Long-Lived Isotopes in Enriched Ge

    Full text link
    We measured the production of \nuc{57}{Co}, \nuc{54}{Mn}, \nuc{68}{Ge}, \nuc{65}{Zn}, and \nuc{60}{Co} in a sample of Ge enriched in isotope 76 due to high-energy neutron interactions. These isotopes, especially \nuc{68}{Ge}, are critical in understanding background in Ge detectors used for double-beta decay experiments. They are produced by cosmogenic-neutron interactions in the detectors while they reside on the Earth's surface. These production rates were measured at neutron energies of a few hundred MeV. We compared the measured production to that predicted by cross-section calculations based on CEM03.02. The cross section calculations over-predict our measurements by approximately a factor of three depending on isotope. We then use the measured cosmic-ray neutron flux, our measurements, and the CEM03.02 cross sections to predict the cosmogenic production rate of these isotopes. The uncertainty in extrapolating the cross section model to higher energies dominates the total uncertainty in the cosmogenic production rate.Comment: Revised after feedback and further work on extrapolating cross sections to higher energies in order to estimate cosmic production rates. Also a numerical error was found and fixed in the estimate of the Co-57 production rat

    Co-Seismic Displacements of the 1992 Landers Earthquake Sequence

    Get PDF
    We present co-seismic displacement vectors derived from Global Positioning System (GPS) measurements of 92 stations in southern California. These GPS results are combined with five well-determined GPS displacement vectors from continuously tracking stations of the Permanent GPS Geodetic Array, as well as line-length changes from USGS Geodolite and two-color laser trilateration observations, to determine a self-consistent set of geodetic data for the earthquake. These combined displacements are modeled by an elastic dislocation representation of the primary fault rupture planes. On average, the model residuals are about twice the estimated measurement errors

    Verification of electromagnetic calorimeter concept for the HADES spectrometer

    Get PDF
    The HADES spectrometer currently operating on the beam of SIS18 accelerator in GSI will be moved to a new position in the CBM cave of the future FAIR complex. Electromagnetic calorimeter (ECAL) will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeVon the beam of the new accelerator SIS100. Calorimeter will be based on 978 massive lead glass modules read out by photomultipliers and a novel front-end electronics. Secondary gamma beam with energies ranging from 81 MeV up to 1399 MeV from MAMI-C Mainz facility was used to verify selected technical solutions. Relative energy resolution was measured using modules with three different types of photomultipliers. Two types of developed front-end electronics as well as energy leakage between neighbouring modules under parallel and declined gamma beams were studied in detail

    The s Process: Nuclear Physics, Stellar Models, Observations

    Full text link
    Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear and atomic physics, and stellar modeling is reviewed and the corresponding interplay is illustrated by the general abundance patterns of the elements beyond iron and by the effect of sensitive branching points along the s-process path. The strong variations of the s-process efficiency with metallicity bear also interesting consequences for Galactic chemical evolution.Comment: 53 pages, 20 figures, 3 tables; Reviews of Modern Physics, accepte

    High-Throughput In Vitro, Ex Vivo, and In Vivo Screen of Adeno-Associated Virus Vectors Based on Physical and Functional Transduction

    Get PDF
    Adeno-associated virus (AAV) vectors are quickly becoming the vectors of choice for therapeutic gene delivery. To date, hundreds of natural isolates and bioengineered variants have been reported. While factors such as high production titer and low immunoreactivity are important to consider, the ability to deliver the genetic payload (physical transduction) and to drive high transgene expression (functional transduction) remains the most important feature when selecting AAV variants for clinical applications. Reporter expression assays are the most commonly used methods for determining vector fitness. However, such approaches are time consuming and become impractical when evaluating a large number of variants. Limited access to primary human tissues or challenging model systems further complicates vector testing. To address this problem, convenient high-throughput methods based on next-generation sequencing (NGS) are being developed. To this end, we built an AAV Testing Kit that allows inherent flexibility in regard to number and type of AAV variants included, and is compatible with in vitro, ex vivo, and in vivo applications. The Testing Kit presented here consists of a mix of 30 known AAVs where each variant encodes a CMV-eGFP cassette and a unique barcode in the 3′-untranslated region of the eGFP gene, allowing NGS-barcode analysis at both the DNA and RNA/cDNA levels. To validate the AAV Testing Kit, individually packaged barcoded variants were mixed at an equal ratio and used to transduce cells/tissues of interest. DNA and RNA/cDNA were extracted and subsequently analyzed by NGS to determine the physical/functional transduction efficiencies. We were able to assess the transduction efficiencies of immortalized cells, primary cells, and induced pluripotent stem cells in vitro, as well as in vivo transduction in naïve mice and a xenograft liver model. Importantly, while our data validated previously reported transduction characteristics of individual capsids, we also identified novel previously unknown tropisms for some AAV variants

    Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR

    Full text link
    The possibility of measuring the proton electromagnetic form factors in the time-like region at FAIR with the \PANDA detector is discussed. Detailed simulations on signal efficiency for the annihilation of pˉ+p\bar p +p into a lepton pair as well as for the most important background channels have been performed. It is shown that precision measurements of the differential cross section of the reaction pˉ+pe++e\bar p +p \to e^++ e^- can be obtained in a wide angular and kinematical range. The individual determination of the moduli of the electric and magnetic proton form factors will be possible up to a value of momentum transfer squared of q214q^2\simeq 14 (GeV/c)2^2. The total pˉ+pe++e\bar p +p\to e^++e^- cross section will be measured up to q228q^2\simeq 28 (GeV/c)2^2. The results obtained from simulated events are compared to the existing data. Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations, 4 tables, 9 figure

    Measurement of Through-Going Particle Momentum By Means Of Multiple Scattering With The ICARUS T600 TPC

    Get PDF
    The ICARUS collaboration has demonstrated, following the operation of a 600 ton (T600) detector at shallow depth, that the technique based on liquid Argon TPCs is now mature. The study of rare events, not contemplated in the Standard Model, can greatly benefit from the use of this kind of detectors. In particular, a deeper understanding of atmospheric neutrino properties will be obtained thanks to the unprecedented quality of the data ICARUS provides. However if we concentrate on the T600 performance, most of the νμ\nu_\mu charged current sample will be partially contained, due to the reduced dimensions of the detector. In this article, we address the problem of how well we can determine the kinematics of events having partially contained tracks. The analysis of a large sample of atmospheric muons collected during the T600 test run demonstrate that, in case the recorded track is at least one meter long, the muon momentum can be reconstructed by an algorithm that measures the Multiple Coulomb Scattering along the particle's path. Moreover, we show that momentum resolution can be improved by a factor two using an algorithm based on the Kalman Filtering technique
    corecore