432 research outputs found

    Quantitative sensing and signalling of single-stranded DNA during the DNA damage response

    Get PDF
    The DNA damage checkpoint senses the presence of DNA lesions and controls the cellular response thereto. A crucial DNA damage signal is single-stranded DNA (ssDNA), which is frequently found at sites of DNA damage and recruits the sensor checkpoint kinase Mec1-Ddc2. However, how this signal - and therefore the cell's DNA damage load - is quantified, is poorly understood. Here, we use genetic manipulation of DNA end resection to induce quantitatively different ssDNA signals at a site-specific double strand break in budding yeast and identify two distinct signalling circuits within the checkpoint. The local checkpoint signalling circuit leading to gamma H2A phosphorylation is unresponsive to increased amounts of ssDNA, while the global checkpoint signalling circuit, which triggers Rad53 activation, integrates the ssDNA signal quantitatively. The global checkpoint signal critically depends on the 9-1-1 and its downstream acting signalling axis, suggesting that ssDNA quantification depends on at least two sensor complexes

    Nickel and skin irritants up-regulate tumor necrosis factor-α mRNA in keratinocytes by different but potentially synergistic mechanisms

    Get PDF
    A critical role of tumor necrosis factor (TNF)-α in irritant contact dermatitis and in the challenge phase of allergic contact dermatitis has recently been demonstrated in vivo. As in situ hybridization studies have indicated that keratinocytes were the cellular source of TNF-α in these reactions, we studied the mechanisms of TNF-α mRNA induction in keratinocytes by agents that induce contact dermatitis. Murine Ia−;/CD3− epidermal cells were stimulated with phorbol myristate acetate (PMA), dimethylsulfoxide (DMSO), sodium dodecyl sulfate (SDS) and NiSO4, all of which up-regulated epidermal cell TNF-α mRNA production. In contrast, trinitrobenzenesulfonic acid and trinitrochlorobenzene did not significantly up-regulate TNF-α mRNA. These results were confirmed with murine keratinocyte cell lines. In keratinocytes transfected with a chloramphenicol acetyltransferase construct containing the −1059 to +138 base pair TNF-α promoter, increased promoter activity was observed upon stimulation with PMA and DMSO. In addition, PMA stimulation did not affect the stability of TNF-α mRNA. The PMA- but also the DMSO- and SDSinduced up-regulation of TNF-α mRNA was abolished by an inhibitor of protein kinase C (PKC). In contrast, NISO4 up-regulated TNF-α mRNA by a PKC-independent mechanism, did not increase TNF-α promoter activity, but markedly increased the stability of the TNF-α mRNA. Co-stimulation with PMA and NISO4 induced a marked increase in TNF-a mRNA over that obtained with each agent alone. Thus, whereas PKC-dependent irritants act by up-regulating TNF-α promoter activity, nickel acts via post-transcrlptional regulation. Our results, also establish that some irritants and irritant sensitizers directly induce TNF-α in keratinocytes without intermediate Langerhans cell derived signal

    A distinct role for recombination repair factors in an early cellular response to transcription-replication conflicts

    Get PDF
    Transcription–replication (T–R) conflicts are profound threats to genome integrity. However, whilst much is known about the existence of T–R conflicts, our understanding of the genetic and temporal nature of how cells respond to them is poorly established. Here, we address this by characterizing the early cellular response to transient T–R conflicts (TRe). This response specifically requires the DNA recombination repair proteins BLM and BRCA2 as well as a non-canonical monoubiquitylation-independent function of FANCD2. A hallmark of the TRe response is the rapid co-localization of these three DNA repair factors at sites of T–R collisions. We find that the TRe response relies on basal activity of the ATR kinase, yet it does not lead to hyperactivation of this key checkpoint protein. Furthermore, specific abrogation of the TRe response leads to DNA damage in mitosis, and promotes chromosome instability and cell death. Collectively our findings identify a new role for these well-established tumor suppressor proteins at an early stage of the cellular response to conflicts between DNA transcription and replication

    Multiple start codons and phosphorylation result in discrete Rad52 protein species

    Get PDF
    The sequence of the Saccharomyces cerevisiae RAD52 gene contains five potential translation start sites and protein-blot analysis typically detects multiple Rad52 species with different electrophoretic mobilities. Here we define the gene products encoded by RAD52. We show that the multiple Rad52 protein species are due to promiscuous choice of start codons as well as post-translational modification. Specifically, Rad52 is phosphorylated both in a cell cycle-independent and in a cell cycle-dependent manner. Furthermore, phosphorylation is dependent on the presence of the Rad52 C terminus, but not dependent on its interaction with Rad51. We also show that the Rad52 protein can be translated from the last three start sites and expression from any one of them is sufficient for spontaneous recombination and the repair of gamma-ray-induced doublestrand breaks

    A novel FRET pair for detection of parallel DNA triplexes by the LightCycler

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melting temperature of DNA structures can be determined on the LightCycler using quenching of FAM. This method is very suitable for pH independent melting point (Tm) determination performed at basic or neutral pH, as a high throughput alternative to UV absorbance measurements. At acidic pH quenching of FAM is not very suitable, since the fluorescence of FAM is strongly pH dependent and drops with acidic pH.</p> <p>Hoogsteen based parallel triplex helix formation requires protonation of cytosines in the triplex forming strand. Therefore, nucleic acid triplexes show strong pH dependence and are stable only at acidic pH. This led us to establish a new pH independent fluorophore based measuring system on the LightCycler for thermal stability studies of parallel triplexes.</p> <p>Results</p> <p>A novel LightCycler FRET pair labelled with ATTO495 and ATTO647N was established for parallel triplex detection with antiparallel duplex as a control for the general applicability of these fluorophores for Tm determination. The ATTO fluorophores were pH stable from pH 4.5 to 7.5. Melting of triplex and duplex structures were accompanied by a large decrease in fluorescence intensity leading to well defined Tm and high reproducibility. Validation of Tm showed low intra- and inter-assay coefficient of variation; 0.11% and 0.14% for parallel triplex and 0.19% and 0.12% for antiparallel duplex. Measurements of Tm and fluorescence intensity over time and multiple runs showed great time and light stability of the ATTO fluorophores. The variance on Tm determinations was significant lower on the LightCycler platform compared to UV absorbance measurements, which enable discrimination of DNA structures with very similar Tm. Labelling of DNA probes with ATTO fluorophore increased Tm of antiparallel duplexes significantly, but not Tm of parallel triplexes.</p> <p>Conclusions</p> <p>We have established a novel pH independent FRET pair with high fluorescence signals on the LightCycler platform for both antiparallel duplex and parallel triplex formation. The method has been thoroughly validated, and is characterized by an excellent accuracy and reproducibility. This FRET pair is especially suitable for ΔTm and Tm<it/> determinations of pH dependent parallel triplex formation.</p

    Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast

    Get PDF
    Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM) pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR) pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI) whereas no significant reduction was found in smaller chromosomes (III and VI). On the other hand, the absence of Rad17 (a critical component of the ATR pathway) lead to an increase in DSB formation (chromosomes VII and II were tested). We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation

    Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

    Get PDF
    The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway

    Aneuploidy Drives Genomic Instability in Yeast

    Get PDF
    Aneuploidy decreases cellular fitness, yet it is also associated with cancer, a disease of enhanced proliferative capacity. To investigate one mechanism by which aneuploidy could contribute to tumorigenesis, we examined the effects of aneuploidy on genomic stability. We analyzed 13 budding yeast strains that carry extra copies of single chromosomes and found that all aneuploid strains exhibited one or more forms of genomic instability. Most strains displayed increased chromosome loss and mitotic recombination, as well as defective DNA damage repair. Aneuploid fission yeast strains also exhibited defects in mitotic recombination. Aneuploidy-induced genomic instability could facilitate the development of genetic alterations that drive malignant growth in cancer
    • …
    corecore