68 research outputs found

    Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance

    Full text link
    [EN] RNA interference (RNAi)-based tools are used in multiple organisms to induce antiviral resistance through the sequence-specific degradation of target RNAs by complementary small RNAs. In plants, highly specific antiviral RNAi-based tools include artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs). syn-tasiRNAs have emerged as a promising antiviral tool allowing for the multi-targeting of viral RNAs through the simultaneous expression of several syn-tasiRNAs from a single precursor. Here, we compared in tomato plants the effects of an amiRNA construct expressing a single amiRNA and a syn-tasiRNA construct expressing four different syn-tasiRNAs against Tomato spotted wilt virus (TSWV), an economically important pathogen affecting tomato crops worldwide. Most of the syn-tasiRNA lines were resistant to TSWV, whereas the majority of the amiRNA lines were susceptible and accumulated viral progenies with mutations in the amiRNA target site. Only the two amiRNA lines with higher amiRNA accumulation were resistant, whereas resistance in syn-tasiRNA lines was not exclusive of lines with high syn-tasiRNA accumulation. Collectively, these results suggest that syn-tasiRNAs induce enhanced antiviral resistance because of the combined silencing effect of each individual syn-tasiRNA, which minimizes the possibility that the virus simultaneously mutates all different target sites to fully escape each syn-tasiRNA.We thank V. Aragones and E. Moya for invaluable technical assistance. This work was supported by grants from Ministerio de Ciencia, Innovacion y Universidades (MCIU, Spain), Agencia Estatal de Investigacion (AEI, Spain) and Fondo Europeo de Desarrollo Regional (FEDER, European Union) (RTI2018-095118-A-100 and RYC-2017-21648 to A.C.; BIO2017-83184-R to J.-A.D.).Carbonell, A.; Lisón, P.; Daròs, J. (2019). Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance. The Plant Journal. 100(4):720-737. https://doi.org/10.1111/tpj.14466S7207371004Ai, T., Zhang, L., Gao, Z., Zhu, C. X., & Guo, X. (2011). Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biology, 13(2), 304-316. doi:10.1111/j.1438-8677.2010.00374.xAli, Z., Ali, S., Tashkandi, M., Zaidi, S. S.-A., & Mahfouz, M. M. (2016). CRISPR/Cas9-Mediated Immunity to Geminiviruses: Differential Interference and Evasion. Scientific Reports, 6(1). doi:10.1038/srep26912Berkhout, B., & Das, A. T. (2012). HIV-1 Escape From RNAi Antivirals: Yet Another Houdini Action? Molecular Therapy - Nucleic Acids, 1, e26. doi:10.1038/mtna.2012.22Bishop, K. N., Holmes, R. K., Sheehy, A. M., & Malim, M. H. (2004). APOBEC-Mediated Editing of Viral RNA. Science, 305(5684), 645-645. doi:10.1126/science.1100658Ter Brake, O., Konstantinova, P., Ceylan, M., & Berkhout, B. (2006). Silencing of HIV-1 with RNA Interference: a Multiple shRNA Approach. Molecular Therapy, 14(6), 883-892. doi:10.1016/j.ymthe.2006.07.007Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 320(5880), 1185-1190. doi:10.1126/science.1159151Carbonell, A. (2017). Artificial small RNA-based strategies for effective and specific gene silencing in plants. Plant gene silencing: mechanisms and applications, 110-127. doi:10.1079/9781780647678.0110Carbonell, A. (2019). Design and High-Throughput Generation of Artificial Small RNA Constructs for Plants. Plant MicroRNAs, 247-260. doi:10.1007/978-1-4939-9042-9_19Carbonell, A. (2019). Secondary Small Interfering RNA-Based Silencing Tools in Plants: An Update. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00687Carbonell, A., & Daròs, J.-A. (2017). Artificial microRNAs and synthetictrans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology, 18(5), 746-753. doi:10.1111/mpp.12529Carbonell, A., & Daròs, J.-A. (2019). Design, Synthesis, and Functional Analysis of Highly Specific Artificial Small RNAs with Antiviral Activity in Plants. Antiviral Resistance in Plants, 231-246. doi:10.1007/978-1-4939-9635-3_13Carbonell, A., Takeda, A., Fahlgren, N., Johnson, S. C., Cuperus, J. T., & Carrington, J. C. (2014). New Generation of Artificial MicroRNA and Synthetic Trans-Acting Small Interfering RNA Vectors for Efficient Gene Silencing in Arabidopsis. Plant Physiology, 165(1), 15-29. doi:10.1104/pp.113.234989Carbonell, A., Fahlgren, N., Mitchell, S., Cox, K. L., Reilly, K. C., Mockler, T. C., & Carrington, J. C. (2015). Highly specific gene silencing in a monocot species by artificial micro RNA s derived from chimeric mi RNA precursors. The Plant Journal, 82(6), 1061-1075. doi:10.1111/tpj.12835Carbonell, A., López, C., & Daròs, J.-A. (2019). Fast-Forward Identification of Highly Effective Artificial Small RNAs Against Different Tomato spotted wilt virus Isolates. Molecular Plant-Microbe Interactions®, 32(2), 142-156. doi:10.1094/mpmi-05-18-0117-taBhushan, K. (2018). CRISPR/Cas13a targeting of RNA virus in plants. Plant Cell Reports, 37(12), 1707-1712. doi:10.1007/s00299-018-2297-2Chen, L., Cheng, X., Cai, J., Zhan, L., Wu, X., Liu, Q., & Wu, X. (2016). Multiple virus resistance using artificial trans-acting siRNAs. Journal of Virological Methods, 228, 16-20. doi:10.1016/j.jviromet.2015.11.004Cullen, B. R. (2006). Role and Mechanism of Action of the APOBEC3 Family of Antiretroviral Resistance Factors. Journal of Virology, 80(3), 1067-1076. doi:10.1128/jvi.80.3.1067-1076.2006Cuperus, J. T., Carbonell, A., Fahlgren, N., Garcia-Ruiz, H., Burke, R. T., Takeda, A., … Carrington, J. C. (2010). Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology, 17(8), 997-1003. doi:10.1038/nsmb.1866Debreczeni, D. E., López, C., Aramburu, J., Darós, J. A., Soler, S., Galipienso, L., … Rubio, L. (2015). Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato Sw-5 resistance-breaking and pepper Tsw resistance-breaking) from Spain. Archives of Virology, 160(8), 2117-2123. doi:10.1007/s00705-015-2453-8Ding, S.-W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10(9), 632-644. doi:10.1038/nri2824Von Eije, K. J., Brake, O. ter, & Berkhout, B. (2008). Human Immunodeficiency Virus Type 1 Escape Is Restricted When Conserved Genome Sequences Are Targeted by RNA Interference. Journal of Virology, 82(6), 2895-2903. doi:10.1128/jvi.02035-07Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-yFahim, M., Millar, A. A., Wood, C. C., & Larkin, P. J. (2011). Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnology Journal, 10(2), 150-163. doi:10.1111/j.1467-7652.2011.00647.xFahlgren, N., & Carrington, J. C. (2009). miRNA Target Prediction in Plants. Plant MicroRNAs, 51-57. doi:10.1007/978-1-60327-005-2_4Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811. doi:10.1038/35888Gitlin, L., Stone, J. K., & Andino, R. (2005). Poliovirus Escape from RNA Interference: Short Interfering RNA-Target Recognition and Implications for Therapeutic Approaches. Journal of Virology, 79(2), 1027-1035. doi:10.1128/jvi.79.2.1027-1035.2005Khan, M. Z., Amin, I., Hameed, A., & Mansoor, S. (2018). CRISPR–Cas13a: Prospects for Plant Virus Resistance. Trends in Biotechnology, 36(12), 1207-1210. doi:10.1016/j.tibtech.2018.05.005Khan, M. Z., Haider, S., Mansoor, S., & Amin, I. (2019). Targeting Plant ssDNA Viruses with Engineered Miniature CRISPR-Cas14a. Trends in Biotechnology, 37(8), 800-804. doi:10.1016/j.tibtech.2019.03.015Kis, A., Tholt, G., Ivanics, M., Várallyay, É., Jenes, B., & Havelda, Z. (2015). Polycistronic artificial miRNA-mediated resistance toWheat dwarf virusin barley is highly efficient at low temperature. Molecular Plant Pathology, 17(3), 427-437. doi:10.1111/mpp.12291KUNG, Y.-J., LIN, S.-S., HUANG, Y.-L., CHEN, T.-C., HARISH, S. S., CHUA, N.-H., & YEH, S.-D. (2011). Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Molecular Plant Pathology, 13(3), 303-317. doi:10.1111/j.1364-3703.2011.00747.xLafforgue, G., Martinez, F., Sardanyes, J., de la Iglesia, F., Niu, Q.-W., Lin, S.-S., … Elena, S. F. (2011). Tempo and Mode of Plant RNA Virus Escape from RNA Interference-Mediated Resistance. Journal of Virology, 85(19), 9686-9695. doi:10.1128/jvi.05326-11Lafforgue, G., Martinez, F., Niu, Q.-W., Chua, N.-H., Daros, J.-A., & Elena, S. F. (2013). Improving the Effectiveness of Artificial MicroRNA (amiR)-Mediated Resistance against Turnip Mosaic Virus by Combining Two amiRs or by Targeting Highly Conserved Viral Genomic Regions. Journal of Virology, 87(14), 8254-8256. doi:10.1128/jvi.00914-13Levanova, A., & Poranen, M. M. (2018). RNA Interference as a Prospective Tool for the Control of Human Viral Infections. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.02151Lin, S.-S., Wu, H.-W., Elena, S. F., Chen, K.-C., Niu, Q.-W., Yeh, S.-D., … Chua, N.-H. (2009). Molecular Evolution of a Viral Non-Coding Sequence under the Selective Pressure of amiRNA-Mediated Silencing. PLoS Pathogens, 5(2), e1000312. doi:10.1371/journal.ppat.1000312Liu, Q., Wang, F., & Axtell, M. J. (2014). Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay  . The Plant Cell, 26(2), 741-753. doi:10.1105/tpc.113.120972Llave, C., Xie, Z., Kasschau, K. D., & Carrington, J. C. (2002). Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA. Science, 297(5589), 2053-2056. doi:10.1126/science.1076311Mahas, A., & Mahfouz, M. (2018). Engineering virus resistance via CRISPR–Cas systems. Current Opinion in Virology, 32, 1-8. doi:10.1016/j.coviro.2018.06.002Martínez, F., Lafforgue, G., Morelli, M. J., González-Candelas, F., Chua, N.-H., Daròs, J.-A., & Elena, S. F. (2012). Ultradeep Sequencing Analysis of Population Dynamics of Virus Escape Mutants in RNAi-Mediated Resistant Plants. Molecular Biology and Evolution, 29(11), 3297-3307. doi:10.1093/molbev/mss135Mehta, D., Stürchler, A., Anjanappa, R. B., Zaidi, S. S.-A., Hirsch-Hoffmann, M., Gruissem, W., & Vanderschuren, H. (2019). Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biology, 20(1). doi:10.1186/s13059-019-1678-3Mitter, N., Zhai, Y., Bai, A. X., Chua, K., Eid, S., Constantin, M., … Pappu, H. R. (2016). Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Research, 211, 151-158. doi:10.1016/j.virusres.2015.10.003Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033Montgomery, T. A., Yoo, S. J., Fahlgren, N., Gilbert, S. D., Howell, M. D., Sullivan, C. M., … Carrington, J. C. (2008). AGO1-miR173 complex initiates phased siRNA formation in plants. Proceedings of the National Academy of Sciences, 105(51), 20055-20062. doi:10.1073/pnas.0810241105Nishitsuji, H., Kohara, M., Kannagi, M., & Masuda, T. (2006). Effective Suppression of Human Immunodeficiency Virus Type 1 through a Combination of Short- or Long-Hairpin RNAs Targeting Essential Sequences for Retroviral Integration. Journal of Virology, 80(15), 7658-7666. doi:10.1128/jvi.00078-06Niu, Q.-W., Lin, S.-S., Reyes, J. L., Chen, K.-C., Wu, H.-W., Yeh, S.-D., & Chua, N.-H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24(11), 1420-1428. doi:10.1038/nbt1255Presloid, J., & Novella, I. (2015). RNA Viruses and RNAi: Quasispecies Implications for Viral Escape. Viruses, 7(6), 3226-3240. doi:10.3390/v7062768Qu, J., Ye, J., & Fang, R. (2007). Artificial MicroRNA-Mediated Virus Resistance in Plants. Journal of Virology, 81(12), 6690-6699. doi:10.1128/jvi.02457-06SCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.xSchwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 8(4), 517-527. doi:10.1016/j.devcel.2005.01.018Shah, P. S., Pham, N. P., & Schaffer, D. V. (2012). HIV Develops Indirect Cross-resistance to Combinatorial RNAi Targeting Two Distinct and Spatially Distant Sites. Molecular Therapy, 20(4), 840-848. doi:10.1038/mt.2012.3Simón-Mateo, C., & García, J. A. (2006). MicroRNA-Guided Processing Impairs Plum Pox Virus Replication, but the Virus Readily Evolves To Escape This Silencing Mechanism. Journal of Virology, 80(5), 2429-2436. doi:10.1128/jvi.80.5.2429-2436.2006Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., & Mahfouz, M. M. (2018). Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signaling & Behavior, 13(10), e1525996. doi:10.1080/15592324.2018.1525996Turina, M., Kormelink, R., & Resende, R. O. (2016). Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. Annual Review of Phytopathology, 54(1), 347-371. doi:10.1146/annurev-phyto-080615-095843Wang, G., Zhao, N., Berkhout, B., & Das, A. T. (2016). CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape. Molecular Therapy, 24(3), 522-526. doi:10.1038/mt.2016.24Wang, Z., Pan, Q., Gendron, P., Zhu, W., Guo, F., Cen, S., … Liang, C. (2016). CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape. Cell Reports, 15(3), 481-489. doi:10.1016/j.celrep.2016.03.042Yoder, K. E., & Bundschuh, R. (2016). Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9. Scientific Reports, 6(1). doi:10.1038/srep29530Zhang, Z. J. (2014). Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. Planta, 239(6), 1139-1146. doi:10.1007/s00425-014-2054-

    Cryo-EM structure and rRNA modification sites of a plant ribosome

    Full text link
    [EN] Protein synthesis in crop plants contributes to the balance of food and fuel on our planet, which influences human metabolic activity and lifespan. Protein synthesis can be regulated with respect to changing environmental cues via the deposition of chemical modifications into rRNA. Here, we present the structure of a plant ribosome from tomato and a quantitative mass spectrometry analysis of its rRNAs. The study reveals fine features of the ribosomal proteins and 71 plant-specific rRNA modifications, and it re-annotates 30 rRNA residues in the available sequence. At the protein level, isoAsp is found in position 137 of uS11, and a zinc finger previously believed to be universal is missing from eL34, suggesting a lower effect of zinc deficiency on protein synthesis in plants. At the rRNA level, the plant ribosome differs markedly from its human counterpart with respect to the spatial distribution of modifications. Thus, it represents an additional layer of gene expression regulation, highlighting the molecular signature of a plant ribosome. The results provide a reference model of a plant ribosome for structural studies and an accurate marker for molecular ecology.This work was supported by the Swedish Foundation for Strategic Research (ARC19:0051), the Knut and Alice Wallenberg Foundation (2018.0080), the EMBO Young Investigator Program, and a NASA award (80NSSC18K1139 to A.S.P.).Cottilli, P.; Itoh, Y.; Nobe, Y.; Petrov, AS.; Lisón, P.; Taoka, M.; Amunts, A. (2022). Cryo-EM structure and rRNA modification sites of a plant ribosome. Plant communications. 3(5):1-9. https://doi.org/10.1016/j.xplc.2022.100342193

    Relevance of Translational Regulation on Plant Growth and Environmental Responses

    Get PDF
    The authors acknowledge funding by MINECO BIO2015-70483-R to AF, by CAM S2013/ABI-2734 and by ERC GA260468 to MMC, by the Deutsche Forschungsgemeinschaft (DFG, grant TRR175-C05) to DL, by NSF IOS 1444561 and NSF IOS PAPM-EAGER 1650139 to AS, and by Bio4Energy, a Strategic Research Environment appointed by the Swedish government to JH.Ferrando Monleón, AR.; Castellano, M.; Lisón, P.; Leister, D.; Stepanova, AN.; Hanson, J. (2017). Relevance of Translational Regulation on Plant Growth and Environmental Responses. Frontiers in Plant Science. 8:1-2. https://doi.org/10.3389/fpls.2017.02170S128Hummel, M., Cordewener, J. H. G., de Groot, J. C. M., Smeekens, S., America, A. H. P., & Hanson, J. (2012). Dynamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE proteomics. PROTEOMICS, 12(7), 1024-1038. doi:10.1002/pmic.201100413Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate Change and Food Systems. Annual Review of Environment and Resources, 37(1), 195-222. doi:10.1146/annurev-environ-020411-130608Vogel, C., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 13(4), 227-232. doi:10.1038/nrg318

    Ethylene is Involved in Symptom Development and Ribosomal Stress of Tomato Plants upon Citrus Exocortis Viroid Infection

    Full text link
    [EN] Citrus exocortis viroid (CEVd) is known to cause different symptoms in citrus trees, and its mechanism of infection has been studied in tomato as an experimental host, producing ribosomal stress on these plants. Some of the symptoms caused by CEVd in tomato plants resemble those produced by the phytohormone ethylene. The present study is focused on elucidating the relationship between CEVd infection and ethylene on disease development. To this purpose, the ethylene insensitive Never ripe (Nr) tomato mutants were infected with CEVd, and several aspects such as susceptibility to infection, defensive response, ethylene biosynthesis and ribosomal stress were studied. Phenotypic characterization revealed higher susceptibility to CEVd in these mutants, which correlated with higher expression levels of both defense and ethylene biosynthesis genes, as well as the ribosomal stress marker SlNAC082. In addition, Northern blotting revealed compromised ribosome biogenesis in all CEVd infected plants, particularly in Nr mutants. Our results indicate a higher ethylene biosynthesis in Nr mutants and suggest an important role of this phytohormone in disease development and ribosomal stress caused by viroid infection.Vázquez Prol, F.; López-Gresa, MP.; Rodrigo Bravo, I.; Belles Albert, JM.; Lisón, P. (2020). Ethylene is Involved in Symptom Development and Ribosomal Stress of Tomato Plants upon Citrus Exocortis Viroid Infection. Plants. 9(5):1-15. https://doi.org/10.3390/plants9050582S11595Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243Adkar‐Purushothama, C. R., & Perreault, J. (2019). Current overview on viroid–host interactions. WIREs RNA, 11(2). doi:10.1002/wrna.1570Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6Verhoeven, J. th. j., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110(8), 823-831. doi:10.1007/s10658-004-2493-5López-Gresa, M. P., Lisón, P., Yenush, L., Conejero, V., Rodrigo, I., & Bellés, J. M. (2016). Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLOS ONE, 11(11), e0166938. doi:10.1371/journal.pone.0166938Wang, Y., Wu, J., Qiu, Y., Atta, S., Zhou, C., & Cao, M. (2019). Global Transcriptomic Analysis Reveals Insights into the Response of ‘Etrog’ Citron (Citrus medica L.) to Citrus Exocortis Viroid Infection. Viruses, 11(5), 453. doi:10.3390/v11050453Jia, C., Zhang, L., Liu, L., Wang, J., Li, C., & Wang, Q. (2013). Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. Journal of Experimental Botany, 64(2), 637-650. doi:10.1093/jxb/ers360Van Loon, L. C., Geraats, B. P. J., & Linthorst, H. J. M. (2006). Ethylene as a modulator of disease resistance in plants. Trends in Plant Science, 11(4), 184-191. doi:10.1016/j.tplants.2006.02.005Bellés, J. M., & Conejero, V. (1989). Ethylene Mediation of the Viroid-Like Syndrome Induced by Ag+Ions inGynura aurantiacaDC Plants. Journal of Phytopathology, 124(4), 275-284. doi:10.1111/j.1439-0434.1989.tb04924.xDubois, M., Van den Broeck, L., & Inzé, D. (2018). The Pivotal Role of Ethylene in Plant Growth. Trends in Plant Science, 23(4), 311-323. doi:10.1016/j.tplants.2018.01.003Yang, S. F., & Hoffman, N. E. (1984). Ethylene Biosynthesis and its Regulation in Higher Plants. Annual Review of Plant Physiology, 35(1), 155-189. doi:10.1146/annurev.pp.35.060184.001103Wang, K. L.-C., Li, H., & Ecker, J. R. (2002). Ethylene Biosynthesis and Signaling Networks. The Plant Cell, 14(suppl 1), S131-S151. doi:10.1105/tpc.001768Han, L., Li, G.-J., Yang, K.-Y., Mao, G., Wang, R., Liu, Y., & Zhang, S. (2010). Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. The Plant Journal, no-no. doi:10.1111/j.1365-313x.2010.04318.xBellés, J. M., Granell, A., Durán-vila, N., & Conejero, V. (1989). ACC Synthesis as the Activated Step Responsible for the Rise of Ethylene Production Accompanying Citrus Exocortis Viroid Infection in Tomato Plants. Journal of Phytopathology, 125(3), 198-208. doi:10.1111/j.1439-0434.1989.tb01061.xBellés, J. M., Vera, P., Durán-Vila, N., & Conejero, V. (1989). Ethylene production in tomato cultures infected with citrus exocortis viroid (CEV). Canadian Journal of Plant Pathology, 11(3), 256-262. doi:10.1080/07060668909501109Bellés, J. M., & Conejero, V. (1989). Evolution of Ethylene Production, ACC and Conjugated ACC Levels Accompanying Symptom Development in Tomato and Gynura aurantiaca DC Leaves Infected with Citrus Exocortis Viroid (CEV). Journal of Phytopathology, 127(1), 81-85. doi:10.1111/j.1439-0434.1989.tb04506.xBellés, J. M., & Conejero, V. (1991). Suppression by Citrus Exocortis Viroid Infection of the Naturally Occurring Inhibitor of the Conversion of 1-aminocyclopropane-1-carboxylic Acid to Ethylene by Tomato Microsomes. Journal of Phytopathology, 132(3), 245-250. doi:10.1111/j.1439-0434.1991.tb00117.xJu, C., Yoon, G. M., Shemansky, J. M., Lin, D. Y., Ying, Z. I., Chang, J., … Chang, C. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences, 109(47), 19486-19491. doi:10.1073/pnas.1214848109Aloni, R., Wolf, A., Feigenbaum, P., Avni, A., & Klee, H. J. (1998). The Never ripe Mutant Provides Evidence That Tumor-Induced Ethylene Controls the Morphogenesis ofAgrobacterium tumefaciens-Induced Crown Galls on Tomato Stems1,2. Plant Physiology, 117(3), 841-849. doi:10.1104/pp.117.3.841Klee, H. J. (2004). Ethylene Signal Transduction. Moving beyond Arabidopsis. Plant Physiology, 135(2), 660-667. doi:10.1104/pp.104.040998Chen, Y., Rofidal, V., Hem, S., Gil, J., Nosarzewska, J., Berger, N., … Chervin, C. (2019). Targeted Proteomics Allows Quantification of Ethylene Receptors and Reveals SlETR3 Accumulation in Never-Ripe Tomatoes. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01054HU, X., NIE, X., SONG, Y., XIONG, X., & Tai, H. (2011). Ethylene is Involved but Plays a Limited Role in Tomato Chlorotic Dwarf Viroid-Induced Symptom Development in Tomato. Agricultural Sciences in China, 10(4), 544-552. doi:10.1016/s1671-2927(11)60035-7Dı́az, J., ten Have, A., & van Kan, J. A. L. (2002). The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea  . Plant Physiology, 129(3), 1341-1351. doi:10.1104/pp.001453Lund, S. T., Stall, R. E., & Klee, H. J. (1998). Ethylene Regulates the Susceptible Response to Pathogen Infection in Tomato. The Plant Cell, 10(3), 371-382. doi:10.1105/tpc.10.3.371Tsolakidou, M.-D., Pantelides, lakovos S., Tzima, A. K., Kang, S., Paplomatas, E. J., & Tsaltas, D. (2019). Disruption and Overexpression of the Gene Encoding ACC (1-Aminocyclopropane-1-Carboxylic Acid) Deaminase in Soil-Borne Fungal Pathogen Verticillium dahliae Revealed the Role of ACC as a Potential Regulator of Virulence and Plant Defense. Molecular Plant-Microbe Interactions®, 32(6), 639-653. doi:10.1094/mpmi-07-18-0203-rWięsyk, A., Iwanicka-Nowicka, R., Fogtman, A., Zagórski-Ostoja, W., & Góra-Sochacka, A. (2018). Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses, 10(5), 257. doi:10.3390/v10050257Eiras, M., Nohales, M. A., Kitajima, E. W., Flores, R., & Daròs, J. A. (2010). Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Archives of Virology, 156(3), 529-533. doi:10.1007/s00705-010-0867-xDubé, A., Bisaillon, M., & Perreault, J.-P. (2009). Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid. Journal of Virology, 83(23), 12057-12067. doi:10.1128/jvi.01151-09Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., … Rodrigo, I. (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. PROTEOMICS, 13(5), 833-844. doi:10.1002/pmic.201200286Cottilli, P., Belda-Palazón, B., Adkar-Purushothama, C. R., Perreault, J.-P., Schleiff, E., Rodrigo, I., … Lisón, P. (2019). Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Research, 47(16), 8649-8661. doi:10.1093/nar/gkz679Ohbayashi, I., Lin, C.-Y., Shinohara, N., Matsumura, Y., Machida, Y., Horiguchi, G., … Sugiyama, M. (2017). Evidence for a Role of ANAC082 as a Ribosomal Stress Response Mediator Leading to Growth Defects and Developmental Alterations in Arabidopsis. The Plant Cell, 29(10), 2644-2660. doi:10.1105/tpc.17.00255Mayer, C., & Grummt, I. (2005). Cellular Stress and Nucleolar Function. Cell Cycle, 4(8), 1036-1038. doi:10.4161/cc.4.8.1925Weis, B. L., Kovacevic, J., Missbach, S., & Schleiff, E. (2015). Plant-Specific Features of Ribosome Biogenesis. Trends in Plant Science, 20(11), 729-740. doi:10.1016/j.tplants.2015.07.003Palm, D., Streit, D., Shanmugam, T., Weis, B. L., Ruprecht, M., Simm, S., & Schleiff, E. (2018). Plant-specific ribosome biogenesis factors in Arabidopsis thaliana with essential function in rRNA processing. Nucleic Acids Research, 47(4), 1880-1895. doi:10.1093/nar/gky1261Christoffersen, R. E., & Laties, G. G. (1982). Ethylene regulation of gene expression in carrots. Proceedings of the National Academy of Sciences, 79(13), 4060-4063. doi:10.1073/pnas.79.13.4060Marei, N., & Romani, R. (1971). Ethylene-stimulated Synthesis of Ribosomes, Ribonucleic Acid, and Protein in Developing Fig Fruits. Plant Physiology, 48(6), 806-808. doi:10.1104/pp.48.6.806Spiers, J., Brady, C., Grierson, D., & Lee, E. (1984). Changes in Ribosome Organization and Messenger RNA Abundance in Ripening Tomato Fruits. Functional Plant Biology, 11(3), 225. doi:10.1071/pp9840225Merchante, C., Brumos, J., Yun, J., Hu, Q., Spencer, K. R., Enríquez, P., … Alonso, J. M. (2015). Gene-Specific Translation Regulation Mediated by the Hormone-Signaling Molecule EIN2. Cell, 163(3), 684-697. doi:10.1016/j.cell.2015.09.036Tornero, P., Rodrigo, I., Conejero, V., & Vera, P. (1993). Nucleotide Sequence of a cDNA Encoding a Pathogenesis-Related Protein, P1-p14, from Tomato (Lycopersicon esculentum). Plant Physiology, 102(1), 325-325. doi:10.1104/pp.102.1.325Granell, A., Bellés, J. M., & Conejero, V. (1987). Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiological and Molecular Plant Pathology, 31(1), 83-90. doi:10.1016/0885-5765(87)90008-7Mehari, Z. H., Elad, Y., Rav-David, D., Graber, E. R., & Meller Harel, Y. (2015). Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil, 395(1-2), 31-44. doi:10.1007/s11104-015-2445-1Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y., & Inaba, A. (1998). Differential Expression and Internal Feedback Regulation of 1-Aminocyclopropane-1-Carboxylate Synthase, 1-Aminocyclopropane-1-Carboxylate Oxidase, and Ethylene Receptor Genes in Tomato Fruit during Development and Ripening. Plant Physiology, 118(4), 1295-1305. doi:10.1104/pp.118.4.1295Katsarou, K., Wu, Y., Zhang, R., Bonar, N., Morris, J., Hedley, P. E., … Hornyik, C. (2016). Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection. PLOS ONE, 11(3), e0150711. doi:10.1371/journal.pone.0150711Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053O’Donnell, P. J., Jones, J. B., Antoine, F. R., Ciardi, J., & Klee, H. J. (2001). Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. The Plant Journal, 25(3), 315-323. doi:10.1046/j.1365-313x.2001.00968.xGómez, G., Martínez, G., & Pallás, V. (2008). Viroid-Induced Symptoms in Nicotiana benthamiana Plants Are Dependent on RDR6 Activity  . Plant Physiology, 148(1), 414-423. doi:10.1104/pp.108.120808Li, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y., & Zhang, S. (2012). Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis. PLoS Genetics, 8(6), e1002767. doi:10.1371/journal.pgen.1002767Berrocal-Lobo, M., Molina, A., & Solano, R. (2002). Constitutive expression ofETHYLENE-RESPONSE-FACTOR1inArabidopsisconfers resistance to several necrotrophic fungi. The Plant Journal, 29(1), 23-32. doi:10.1046/j.1365-313x.2002.01191.xChowdhury, S., Basu, A., & Kundu, S. (2017). Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Scientific Reports, 7(1). doi:10.1038/s41598-017-17248-7Shin, S., Lv, J., Fazio, G., Mazzola, M., & Zhu, Y. (2014). Transcriptional regulation of ethylene and jasmonate mediated defense response in apple (Malus domestica) root during Pythium ultimum infection. Horticulture Research, 1(1). doi:10.1038/hortres.2014.53Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205-227. doi:10.1146/annurev.phyto.43.040204.135923McDowell, J. M., & Dangl, J. L. (2000). Signal transduction in the plant immune response. Trends in Biochemical Sciences, 25(2), 79-82. doi:10.1016/s0968-0004(99)01532-7Heck, S., Grau, T., Buchala, A., Metraux, J.-P., & Nawrath, C. (2003). Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction. The Plant Journal, 36(3), 342-352. doi:10.1046/j.1365-313x.2003.01881.xConejero, V., & Granell, A. (1986). Stimulation of a viroid-like syndrome and the impairment of viroid infection in Gynura aurantiaca plants by treatment with silver ions. Physiological and Molecular Plant Pathology, 29(3), 317-323. doi:10.1016/s0048-4059(86)80048-0Yan, S., & Dong, X. (2014). Perception of the plant immune signal salicylic acid. Current Opinion in Plant Biology, 20, 64-68. doi:10.1016/j.pbi.2014.04.006Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., … Dong, X. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486(7402), 228-232. doi:10.1038/nature11162Schott-Verdugo, S., Müller, L., Classen, E., Gohlke, H., & Groth, G. (2019). Structural Model of the ETR1 Ethylene Receptor Transmembrane Sensor Domain. Scientific Reports, 9(1). doi:10.1038/s41598-019-45189-wClark, D. G., Gubrium, E. K., Barrett, J. E., Nell, T. A., & Klee, H. J. (1999). Root Formation in Ethylene-Insensitive Plants. Plant Physiology, 121(1), 53-60. doi:10.1104/pp.121.1.53Rodrı́guez, F. I., Esch, J. J., Hall, A. E., Binder, B. M., Schaller, G. E., & Bleecker, A. B. (1999). A Copper Cofactor for the Ethylene Receptor ETR1 from Arabidopsis. Science, 283(5404), 996-998. doi:10.1126/science.283.5404.996Schaller, G. E., Ladd, A. N., Lanahan, M. B., Spanbauer, J. M., & Bleecker, A. B. (1995). The Ethylene Response Mediator ETR1 from Arabidopsis Forms a Disulfide-linked Dimer. Journal of Biological Chemistry, 270(21), 12526-12530. doi:10.1074/jbc.270.21.12526Gao, Z., & Schaller, G. E. (2009). The role of receptor interactions in regulating ethylene signal transduction. Plant Signaling & Behavior, 4(12), 1152-1153. doi:10.4161/psb.4.12.9943Gao, Z., Wen, C.-K., Binder, B. M., Chen, Y.-F., Chang, J., Chiang, Y.-H., … Schaller, G. E. (2008). Heteromeric Interactions among Ethylene Receptors Mediate Signaling in Arabidopsis. Journal of Biological Chemistry, 283(35), 23801-23810. doi:10.1074/jbc.m800641200Grefen, C., Städele, K., Růžička, K., Obrdlik, P., Harter, K., & Horák, J. (2008). Subcellular Localization and In Vivo Interactions of the Arabidopsis thaliana Ethylene Receptor Family Members. Molecular Plant, 1(2), 308-320. doi:10.1093/mp/ssm015Kim, H. J., Park, J.-H., Kim, J., Kim, J. J., Hong, S., Kim, J., … Hwang, D. (2018). Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis. Proceedings of the National Academy of Sciences, 115(21), E4930-E4939. doi:10.1073/pnas.1721523115Semancik, J. S., Roistacher, C. N., Rivera-Bustamante, R., & Duran-Vila, N. (1988). Citrus Cachexia Viroid, a New Viroid of Citrus: Relationship to Viroids of the Exocortis Disease Complex. Journal of General Virology, 69(12), 3059-3068. doi:10.1099/0022-1317-69-12-3059Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., … Lisón, P. (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiology and Biochemistry, 77, 35-43. doi:10.1016/j.plaphy.2014.01.016Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523LAEMMLI, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. doi:10.1038/227680a

    Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus

    Full text link
    [EN] Tomato plants expressing the NahG transgene, which prevents accumulation of endogenous salicylic acid (SA), were used to study the importance of the SA signalling pathway in basal defence against Citrus Exocortis Viroid (CEVd) or Tomato Spotted Wilt Virus (TSWV). The lack of SA accumulation in the CEVd- or TSWV-infected NahG tomato plants led to an early and dramatic disease phenotype, as compared to that observed in the corresponding parental Money Maker. Addition of acibenzolar-S-methyl, a benzothiadiazole (BTH), which activates the systemic acquired resistance pathway downstream of SA signalling, improves resistance of NahG tomato plants to CEVd and TSWV. CEVd and TSWV inoculation induced the accumulation of the hydroxycinnamic amides p-coumaroyltyramine, feruloyltyramine, caffeoylputrescine, and feruloylputrescine, and the defence related proteins PR1 and P23 in NahG plants earlier and with more intensity than in Money Maker plants, indicating that SA is not essential for the induction of these plant defence metabolites and proteins. In addition, NahG plants produced very high levels of ethylene upon CEVd or TSWV infection when compared with infected Money Maker plants, indicating that the absence of SA produced additional effects on other metabolic pathways. This is the first report to show that SA is an important component of basal resistance of tomato plants to both CEVd and TSWV, indicating that SA-dependent defence mechanisms play a key role in limiting the severity of symptoms in CEVd- and TSWV-infected NahG tomato plants.This work was supported by grant BIO2012-33419 from the Spanish Ministry of Economy and Competitiveness received by JMB. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.López-Gresa, MP.; Lisón, P.; Yenush, L.; Conejero Tomás, V.; Rodrigo Bravo, I.; Belles Albert, JM. (2016). Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLoS ONE. 11(11). https://doi.org/10.1371/journal.pone.0166938S111

    (Z)-3-Hexenyl Butyrate induces stomata closure and ripening in Vitis vinifera

    Get PDF
    [EN] Agronomy solutions for modifying pre-harvest grape ripening are needed for a more sustainable viticulture. Field experiments were performed inVitis viniferaL. vines to study the effect of the previously described stomata-closing compound (Z)-3-hexenyl butyrate (HB). Exogenous treatments at different doses were periodically carried out using a randomized block design. Firstly, we observed that HB was able to induce stomatal closure in grapevine plants. Under field conditions, the application of HB around veraison induced a higher color intensity in berries, and vines treated at higher doses reached this stage earlier than the un-treated controls. There was also a clear increase in both grape anthocyanin concentration and total soluble solids without having a negative impact on total yield. We therefore, confirm the role of HB as a universal natural stomatal closure compound and propose a new use for HB in viticulture as a ripening inducer, by accelerating anthocyanin accumulation.This research was funded by Grant INNVAL10/18/005 from the Agencia Valenciana de la Innovacio (Spain). C.P. was a recipient of a predoctoral contract of the Generalitat Valenciana (ACIF/2019/187). D.S.I. is supported by AEI-FEDER grant AGL2017-83738-C3-3-R.Payá Montes, C.; López-Gresa, MP.; Intrigliolo, DS.; Rodrigo Bravo, I.; Belles Albert, JM.; Lisón, P. (2020). (Z)-3-Hexenyl Butyrate induces stomata closure and ripening in Vitis vinifera. Agronomy. 10(8):1-12. https://doi.org/10.3390/agronomy10081122S112108Zoccatelli, G., Zenoni, S., Savoi, S., Dal Santo, S., Tononi, P., Zandonà, V., … Tornielli, G. B. (2013). Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapevine cultivars. Australian Journal of Grape and Wine Research, 19(2), 171-179. doi:10.1111/ajgw.12014Lund, S. T., & Bohlmann, J. (2006). The Molecular Basis for Wine Grape Quality-A Volatile Subject. Science, 311(5762), 804-805. doi:10.1126/science.1118962Kuhn, N., Guan, L., Dai, Z. W., Wu, B.-H., Lauvergeat, V., Gomès, E., … Delrot, S. (2013). Berry ripening: recently heard through the grapevine. Journal of Experimental Botany, 65(16), 4543-4559. doi:10.1093/jxb/ert395Gerós, H., Chaves, M. M., Gil, H. M., & Delrot, S. (Eds.). (2015). Grapevine in a Changing Environment. doi:10.1002/9781118735985Palliotti, A., Tombesi, S., Silvestroni, O., Lanari, V., Gatti, M., & Poni, S. (2014). Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Scientia Horticulturae, 178, 43-54. doi:10.1016/j.scienta.2014.07.039van Leeuwen, Destrac-Irvine, Dubernet, Duchêne, Gowdy, Marguerit, … Ollat. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9(9), 514. doi:10.3390/agronomy9090514Schultz, H. R. (2010). Climate Change and Viticulture: Research Needs for Facing the Future. Journal of Wine Research, 21(2-3), 113-116. doi:10.1080/09571264.2010.530093Fraga, H., Malheiro, A. C., Moutinho‐Pereira, J., & Santos, J. A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94-110. doi:10.1002/fes3.14Zhang, Y., Mechlin, T., & Dami, I. (2011). Foliar Application of Abscisic Acid Induces Dormancy Responses in Greenhouse-grown Grapevines. HortScience, 46(9), 1271-1277. doi:10.21273/hortsci.46.9.1271Jung, C. J., Hur, Y. Y., Yu, H.-J., Noh, J.-H., Park, K.-S., & Lee, H. J. (2014). Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development. PLoS ONE, 9(4), e95634. doi:10.1371/journal.pone.0095634Deytieux-Belleau, C., Gagne, S., L’Hyvernay, A., Donèche, B., & Geny, L. (2007). Possible roles of both abscisic acid and indol-acetic acid in controlling grape berry ripening process. OENO One, 41(3), 141. doi:10.20870/oeno-one.2007.41.3.844El-kenawy, M. (2017). Effect of Chitosan, Salicylic Acid and Fulvic Acid on Vegetative Growth, Yield and Fruit Quality of Thompson Seedless Grapevines. Egyptian Journal of Horticulture, 44(1), 45-59. doi:10.21608/ejoh.2017.1104.1007Becatti, E., Genova, G., Ranieri, A., & Tonutti, P. (2014). Postharvest treatments with ethylene on Vitis vinifera (cv Sangiovese) grapes affect berry metabolism and wine composition. Food Chemistry, 159, 257-266. doi:10.1016/j.foodchem.2014.02.169MENG, J.-F., YU, Y., SHI, T.-C., FU, Y.-S., ZHAO, T., & ZHANG, Z.-W. (2019). Melatonin treatment of pre-veraison grape berries modifies phenolic components and antioxidant activity of grapes and wine. Food Science and Technology, 39(1), 35-42. doi:10.1590/1678-457x.24517Mirdehghan, S. H., & Rahimi, S. (2016). Pre-harvest application of polyamines enhances antioxidants and table grape ( Vitis vinifera L.) quality during postharvest period. Food Chemistry, 196, 1040-1047. doi:10.1016/j.foodchem.2015.10.038Mencarelli, F., & Bellincontro, A. (2018). Recent advances in postharvest technology of the wine grape to improve the wine aroma. Journal of the Science of Food and Agriculture, 100(14), 5046-5055. doi:10.1002/jsfa.8910BELLINCONTRO, A., FARDELLI, A., SANTIS, D. D., BOTONDI, R., & MENCARELLI, F. (2006). Postharvest ethylene and 1-MCP treatments both affect phenols, anthocyanins, and aromatic quality of Aleatico grapes and wine. Australian Journal of Grape and Wine Research, 12(2), 141-149. doi:10.1111/j.1755-0238.2006.tb00054.xBotondi, R., Lodola, L., & Mencarelli, F. (2011). Postharvest ethylene treatment affects berry dehydration, polyphenol and anthocyanin content by increasing the activity of cell wall enzymes in Aleatico wine grape. European Food Research and Technology, 232(4), 679-685. doi:10.1007/s00217-011-1437-5Lovisolo, C., Hartung, W., & Schubert, A. (2002). Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Functional Plant Biology, 29(11), 1349. doi:10.1071/fp02079Flexas, J., Barón, M., Bota, J., Ducruet, J.-M., Gallé, A., Galmés, J., … Medrano, H. (2009). Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri×V. rupestris). Journal of Experimental Botany, 60(8), 2361-2377. doi:10.1093/jxb/erp069Yu, D. J., Kim, S. J., & Lee, H. J. (2009). Stomatal and non-stomatal limitations to photosynthesis in field-grown grapevine cultivars. Biologia plantarum, 53(1), 133-137. doi:10.1007/s10535-009-0019-xWong, S. C., Cowan, I. R., & Farquhar, G. D. (1979). Stomatal conductance correlates with photosynthetic capacity. Nature, 282(5737), 424-426. doi:10.1038/282424a0Franks, P. J., & Farquhar, G. D. (2006). The Mechanical Diversity of Stomata and Its Significance in Gas-Exchange Control. Plant Physiology, 143(1), 78-87. doi:10.1104/pp.106.089367López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., … Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01188López-Gresa, M. P., Payá, C., Ozáez, M., Rodrigo, I., Conejero, V., Klee, H., … Lisón, P. (2018). A New Role For Green Leaf Volatile Esters in Tomato Stomatal Defense Against Pseudomonas syringe pv. tomato. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01855Meyers, K. J., Watkins, C. B., Pritts, M. P., & Liu, R. H. (2003). Antioxidant and Antiproliferative Activities of Strawberries. Journal of Agricultural and Food Chemistry, 51(23), 6887-6892. doi:10.1021/jf034506nGarcía-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., & García-Martínez, J. L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63(16), 5803-5813. doi:10.1093/jxb/ers229Fernández-López, J. A., Almela, L., Muñoz, J. A., Hidalgo, V., & Carreño, J. (1998). Dependence between colour and individual anthocyanin content in ripening grapes. Food Research International, 31(9), 667-672. doi:10.1016/s0963-9969(99)00043-5KENNEDY, J. A., TROUP, G. J., PILBROW, J. R., HUTTON, D. R., HEWITT, D., HUNTER, C. R., … JONES, G. P. (2000). Development of seed polyphenols in berries from Vitis vinifera L. cv. Shiraz. Australian Journal of Grape and Wine Research, 6(3), 244-254. doi:10.1111/j.1755-0238.2000.tb00185.xGupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266-269. doi:10.1126/science.aaz7614Jordan, W. R., Brown, K. W., & Thomas, J. C. (1975). Leaf Age as a Determinant in Stomatal Control of Water Loss from Cotton during Water Stress. Plant Physiology, 56(5), 595-599. doi:10.1104/pp.56.5.595Whitehead, D., Barbour, M. M., Griffin, K. L., Turnbull, M. H., & Tissue, D. T. (2011). Effects of leaf age and tree size on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus solandrii var. cliffortiodes). Tree Physiology, 31(9), 985-996. doi:10.1093/treephys/tpr021Tombesi, S., Nardini, A., Frioni, T., Soccolini, M., Zadra, C., Farinelli, D., … Palliotti, A. (2015). Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports, 5(1). doi:10.1038/srep12449Gamm, M., Héloir, M.-C., & Adrian, M. (2015). Trehalose and trehalose-6-phosphate induce stomatal movements and interfere with ABA-induced stomatal closure in grapevine. OENO One, 49(3), 165. doi:10.20870/oeno-one.2015.49.3.84Di Vaio, C., Marallo, N., Di Lorenzo, R., & Pisciotta, A. (2019). Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy, 9(5), 244. doi:10.3390/agronomy9050244Di Vaio, C., Villano, C., Lisanti, M. T., Marallo, N., Cirillo, A., Di Lorenzo, R., & Pisciotta, A. (2020). Application of Anti-Transpirant to Control Sugar Accumulation in Grape Berries and Alcohol Degree in Wines Obtained from Thinned and Unthinned Vines of cv. Falanghina (Vitis vinifera L.). Agronomy, 10(3), 345. doi:10.3390/agronomy10030345Medrano, H., Tomás, M., Martorell, S., Escalona, J.-M., Pou, A., Fuentes, S., … Bota, J. (2014). Improving water use efficiency of vineyards in semi-arid regions. A review. Agronomy for Sustainable Development, 35(2), 499-517. doi:10.1007/s13593-014-0280-zKALLITHRAKA, S., BAKKER, J., & CLIFFORD, M. N. (1997). EVALUATION OF BITTERNESS AND ASTRINGENCY OF (+)-CATECHIN AND (-)-EPICATECHIN IN RED WINE AND IN MODEL SOLUTION. Journal of Sensory Studies, 12(1), 25-37. doi:10.1111/j.1745-459x.1997.tb00051.xBrillante, L., Belfiore, N., Gaiotti, F., Lovat, L., Sansone, L., Poni, S., & Tomasi, D. (2016). Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought. PLOS ONE, 11(6), e0156631. doi:10.1371/journal.pone.0156631Palliotti, A., Panara, F., Famiani, F., Sabbatini, P., Howell, G. S., Silvestroni, O., & Poni, S. (2013). Postveraison Application of Antitranspirant Di-1- p -Menthene to Control Sugar Accumulation in Sangiovese Grapevines. American Journal of Enology and Viticulture, 64(3), 378-385. doi:10.5344/ajev.2013.13015Fahey, D. J., & Rogiers, S. Y. (2018). Di-1-p -menthene reduces grape leaf and bunch transpiration. Australian Journal of Grape and Wine Research, 25(1), 134-141. doi:10.1111/ajgw.12371Martín, P., Delgado, R., González, M. R., & Gallegos, J. I. (2004). COLOUR OF «TEMPRANILLO» GRAPES AS AFFECTED BY DIFFERENT NITROGEN AND POTASSIUM FERTILIZATION RATES. Acta Horticulturae, (652), 153-160. doi:10.17660/actahortic.2004.652.18Fortes, A., Teixeira, R., & Agudelo-Romero, P. (2015). Complex Interplay of Hormonal Signals during Grape Berry Ripening. Molecules, 20(5), 9326-9343. doi:10.3390/molecules20059326Griesser, M., Savoi, S., Supapvanich, S., Dobrev, P., Vankova, R., & Forneck, A. (2020). Phytohormone profiles are strongly altered during induction and symptom development of the physiological ripening disorder berry shrivel in grapevine. Plant Molecular Biology, 103(1-2), 141-157. doi:10.1007/s11103-020-00980-6Portu, J., López, R., Baroja, E., Santamaría, P., & Garde-Cerdán, T. (2016). Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chemistry, 201, 213-221. doi:10.1016/j.foodchem.2016.01.086Gómez-Plaza, E., Bautista-Ortín, A. B., Ruiz-García, Y., Fernández-Fernández, J. I., & Gil-Muñoz, R. (2016). Effect of elicitors on the evolution of grape phenolic compounds during the ripening period. Journal of the Science of Food and Agriculture, 97(3), 977-983. doi:10.1002/jsfa.7823Silva, V., Singh, R. K., Gomes, N., Soares, B. G., Silva, A., Falco, V., … Poeta, P. (2020). Comparative Insight upon Chitosan Solution and Chitosan Nanoparticles Application on the Phenolic Content, Antioxidant and Antimicrobial Activities of Individual Grape Components of Sousão Variety. Antioxidants, 9(2), 178. doi:10.3390/antiox9020178El-Kereamy, A., Chervin, C., Roustan, J.-P., Cheynier, V., Souquet, J.-M., Moutounet, M., … Bouzayen, M. (2003). Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiologia Plantarum, 119(2), 175-182. doi:10.1034/j.1399-3054.2003.00165.xAllègre, M., Héloir, M.-C., Trouvelot, S., Daire, X., Pugin, A., Wendehenne, D., & Adrian, M. (2009). Are Grapevine Stomata Involved in the Elicitor-Induced Protection Against Downy Mildew? Molecular Plant-Microbe Interactions®, 22(8), 977-986. doi:10.1094/mpmi-22-8-097

    Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus

    Full text link
    [EN] Background: Secondary metabolites play an important role in the plant defensive response. They are produced as a defence mechanism against biotic stress by providing plants with antimicrobial and antioxidant weapons. In higher plants, the majority of secondary metabolites accumulate as glycoconjugates. Glycosylation is one of the commonest modifications of secondary metabolites, and is carried out by enzymes called glycosyltransferases. Results: Here we provide evidence that the previously described tomato wound and pathogen-induced glycosyltransferase Twi1 displays in vitro activity toward the coumarins scopoletin, umbelliferone and esculetin, and the flavonoids quercetin and kaempferol, by uncovering a new role of this gene in plant glycosylation. To test its activity in vivo, Twi1-silenced transgenic tomato plants were generated and infected with Tomato spotted wilt virus. The Twi1- silenced plants showed a differential accumulation of Twi1 substrates and enhanced susceptibility to the virus. Conclusions: Biochemical in vitro assays and transgenic plants generation proved to be useful strategies to assign a role of tomato Twi1 in the plant defence response. Twi1 glycosyltransferase showed to regulate quercetin and kaempferol levels in tomato plants, affecting plant resistance to viral infection.This work was supported by grant BIO2012-33419 from the Direccion General de Programas y Transferencia de Conocimiento, Spanish Ministry of Science and Innovation, and grant AICO/2017/048 from the Valencian Local Government (Generalitat Valenciana, Spain). LC was supported by a predoctoral fellowship (ACIF/2010/231) from the Valencian Local Government (Generalitat Valenciana, Spain). None of the funding bodies was involved in the design of the study, the collection, analysis, and interpretation of the data, nor in the writing of the manuscript, which was made entirely by the authors.Campos Beneyto, L.; López-Gresa, MP.; Fuertes, D.; Belles Albert, JM.; Rodrigo Bravo, I.; Lisón, P. (2019). Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC Plant Biology. 19:1-17. https://doi.org/10.1186/s12870-019-2063-9S11719Kliebenstein DJ. Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 2004;27(6):675–84.Yang L, Wen K-S, Ruan X, Zhao Y-X, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules (Basel, Switzerland). 2018;23(4):762.D'Auria JC, Gershenzon J. The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol. 2005;8(3):308–16.Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7(7):1085–97.Kefeli VI, Kalevitch M, Borsari B. Phenolic cycle in plants and environment. J Cell Mol Biol. 2003;2:13–8.Klessig DF, Choi HW, Dempsey DA. Systemic acquired resistance and salicylic acid: past, present, and future. Mol Plant-Microbe Interact. 2018;31(9):871–88.He XZ, Dixon RA. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell. 2000;12(9):1689–702.Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997;2(4):152–9.Gnonlonfin GJB, Sanni A, Brimer L. Review Scopoletin – a coumarin phytoalexin with medicinal properties. Crit Rev Plant Sci. 2012;31(1):47–56.Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules (Basel, Switzerland). 2014;19(10):16240–65.Liu X, Lin C, Ma X, Tan Y, Wang J, Zeng M. Functional characterization of a flavonoid glycosyltransferase in sweet orange (Citrus sinensis). Front Plant Sci. 2018;9:166.Baidez AG, Gomez P, Del Rio JA, Ortuno A. Dysfunctionality of the xylem in Olea europaea L. plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism. J Agric Food Chem. 2007;55(9):3373–7.El Hadrami A, Adam LR, Daayf F. Biocontrol treatments confer protection against Verticillium dahliae infection of potato by inducing antimicrobial metabolites. Mol Plant-Microbe Interact. 2011;24(3):328–35.Hernandez I, Alegre L, Van Breusegem F, Munne-Bosch S. How relevant are flavonoids as antioxidants in plants? Trends Plant Sci. 2009;14(3):125–32.Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 2012;196:67–76.Wang J, Hou B. Glycosyltransferases: key players involved in the modification of plant secondary metabolites. Front Biol China. 2009;4(1):39–46.Bowles D, Isayenkova J, Lim EK, Poppenberger B. Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol. 2005;8(3):254–63.Lim EK, Bowles DJ. A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J. 2004;23(15):2915–22.Gachon CM, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 2005;10(11):542–9.Ghose K, Selvaraj K, McCallum J, Kirby CW, Sweeney-Nixon M, Cloutier SJ, Deyholos M, Datla R, Fofana B. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG). BMC Plant Biol. 2014;14:82.Li Y, Baldauf S, Lim EK, Bowles DJ. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem. 2001;276(6):4338–43.Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 2000;5(9):380–6.Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci. 2016;7:735.Lim EK, Doucet CJ, Li Y, Elias L, Worrall D, Spencer SP, Ross J, Bowles DJ. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem. 2002;277(1):586–92.Horvath DM, Chua NH. Identification of an immediate-early salicylic acid-inducible tobacco gene and characterization of induction by other compounds. Plant Mol Biol. 1996;31(5):1061–72.Fraissinet-Tachet L, Baltz R, Chong J, Kauffmann S, Fritig B, Saindrenan P. Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid. FEBS Lett. 1998;437(3):319–23.Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell. 2002;14(5):1093–107.Langlois-Meurinne M, Gachon CMM, Saindrenan P. Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiol. 2005;139(4):1890–901.Lee BJ, Kim SK, Choi SB, Bae J, Kim KJ, Kim YJ, Paek KH. Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation. FEBS Lett. 2009;583(13):2315–20.Simon C, Langlois-Meurinne M, Didierlaurent L, Chaouch S, Bellvert F, Massoud K, Garmier M, Thareau V, Comte G, Noctor G, et al. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato. Plant Cell Environ. 2014;37(5):1114–29.Huang XX, Zhu GQ, Liu Q, Chen L, Li YJ, Hou BK. Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids. Plant Physiol. 2018;176(4):3103–19.Gachon C, Baltz R, Saindrenan P. Over-expression of a scopoletin glucosyltransferase in Nicotiana tabacum leads to precocious lesion formation during the hypersensitive response to tobacco mosaic virus but does not affect virus resistance. Plant Mol Biol. 2004;54(1):137–46.Langenbach C, Campe R, Schaffrath U, Goellner K, Conrath U. UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. New Phytol. 2013;198(2):536–45.Song C, Gu L, Liu J, Zhao S, Hong X, Schulenburg K, Schwab W. Functional characterization and substrate promiscuity of UGT71 glycosyltransferases from strawberry (Fragaria x ananassa). Plant Cell Physiol. 2015;56(12):2478–93.Tárraga S, Lisón P, López-Gresa MP, Torres C, Rodrigo I, Bellés JM, Conejero V. Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid. J Exp Bot. 2010;61(15):4325–38.von Saint PV, Zhang W, Kanawati B, Geist B, Faus-Kessler T, Schmitt-Kopplin P, Schaffner AR. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell. 2011;23(11):4124–45.Kim JH, Kim BG, Ko JH, Lee Y, Hur H-G, Lim Y, Ahn J-H. Molecular cloning, expression, and characterization of a flavonoid glycosyltransferase from Arabidopsis thaliana. Plant Sci. 2006;170(4):897–903.Griesser M, Vitzthum F, Fink B, Bellido ML, Raasch C, Munoz-Blanco J, Schwab W. Multi-substrate flavonol O-glucosyltransferases from strawberry (Fragaria x ananassa) achene and receptacle. J Exp Bot. 2008;59(10):2611–25.Rehman HM, Nawaz MA, Shah ZH, Ludwig-Müller J, Chung G, Ahmad MQ, Yang SH, Lee SI. Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Sci Rep. 2018;8(1):1875.Sun Y, Ji K, Liang B, Du Y, Jiang L, Wang J, Kai W, Zhang Y, Zhai X, Chen P, et al. Suppressing ABA uridine diphosphate glucosyltransferase (SlUGT75C1) alters fruit ripening and the stress response in tomato. Plant J. 2017;91(4):574–89.O'Donnell PJ, Truesdale MR, Calvert CM, Dorans A, Roberts MR, Bowles DJ. A novel tomato gene that rapidly responds to wound- and pathogen-related signals. Plant J. 1998;14(1):137–42.Lee HI, Raskin I. Purification, cloning, and expression of a pathogen inducible UDP-glucose: Salicylic acid glucosyltransferase from tobacco. J Biol Chem. 1999;274(51):36637–42.Taguchi G, Imura H, Maeda Y, Kodaira R, Hayashida N, Shimosaka M, Okazaki M. Purification and characterization of UDP-glucose:hydroxycoumarin 7-O-glucosyltransferase, with broad substrate specificity from tobacco cultured cells. Plant Sci. 2000;157(1):105–12.Jackson RG, Lim EK, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford DA, Bowles DJ. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem. 2001;276(6):4350–6.Isayenkova J, Wray V, Nimtz M, Strack D, Vogt T. Cloning and functional characterisation of two regioselective flavonoid glucosyltransferases from Beta vulgaris. Phytochemistry. 2006;67(15):1598–612.Seto Y, Hamada S, Matsuura H, Matsushige M, Satou C, Takahashi K, Masuta C, Ito H, Matsui H, Nabeta K. Purification and cDNA cloning of a wound inducible glucosyltransferase active toward 12-hydroxy jasmonic acid. Phytochemistry. 2009;70(3):370–9.Li X, Svedin E, Mo H, Atwell S, Dilkes BP, Chapple C. Exploiting natural variation of secondary metabolism identifies a gene controlling the glycosylation diversity of dihydroxybenzoic acids in Arabidopsis thaliana. Genetics. 2014;198(3):1267–76.Dewitte G, Walmagh M, Diricks M, Lepak A, Gutmann A, Nidetzky B, Desmet T. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1. J Biotechnol. 2016;233:49–55.Garcia D, Sanier C, Macheix JJ, D'Auzac J. Accumulation of scopoletin in Hevea brasiliensis infected by Microcyclus ulei (P. Henn.) V. ARX and evaluation of its fungitoxicity for three leaf pathogens of rubber tree. Physiol Mol Plant Pathol. 1995;47(4):213–23.Baillieul F, de Ruffray P, Kauffmann S. Molecular cloning and biological activity of alpha-, beta-, and gamma-megaspermin, three elicitins secreted by Phytophthora megasperma H20. Plant Physiol. 2003;131(1):155–66.Shimizu B, Miyagawa H, Ueno T, Sakata K, Watanabe K, Ogawa K. Morning glory systemically accumulates scopoletin and scopolin after interaction with Fusarium oxysporum. Z Naturforsch C. 2005;60(1–2):83–90.Ogawa K. Studies on Fusarium wilt of sweet potato (Ipomoea batatas L.). Bull Natl Agri Res Center Jpn. 1988;10:127–61.Tanguy J, Martin C. Phenolic compounds and the hypersensitivity reaction in Nicotiana tabacum infected with tobacco mosaic virus. Phytochemistry. 1972;11(1):19–28.Churngchow N, Rattarasarn M. The elicitin secreted by Phytophthora palmivora, a rubber tree pathogen. Phytochemistry. 2000;54(1):33–8.Goy PA, Signer H, Reist R, Aichholz R, Blum W, Schmidt E, Kessmann H. Accumulation of scopoletin is associated with the high disease resistance of the hybrid Nicotiana glutinosa x Nicotiana debneyi. Planta. 1993;191(2):200–6.Sun H, Wang L, Zhang B, Ma J, Hettenhausen C, Cao G, Sun G, Wu J, Wu J. Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. J Exp Bot. 2014;65(15):4305–15.Kai K, Shimizu B, Mizutani M, Watanabe K, Sakata K. Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry. 2006;67(4):379–86.Sim M-O, Lee H-I, Ham JR, Seo K-I, Lee M-K. Long-term supplementation of esculetin ameliorates hepatosteatosis and insulin resistance partly by activating AdipoR2–AMPK pathway in diet-induced obese mice. J Funct Foods. 2015;15:160–71.Mazimba O. Umbelliferone: sources, chemistry and bioactivities review. Bull Faculty Pharmacy Cairo Univ. 2017;55(2):223–32.Carpinella MC, Ferrayoli CG, Palacios SM. Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. J Agric Food Chem. 2005;53(8):2922–7.Chen T, Guo Q, Wang H, Zhang H, Wang C, Zhang P, Meng S, Li Y, Ji H, Yan T. Effects of esculetin on lipopolysaccharide (LPS)-induced acute lung injury via regulation of RhoA/Rho Kinase/NF-кB pathways in vivo and in vitro. Free Radic Res. 2015;49(12):1459–68.Prabakaran D, Ashokkumar N. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie. 2013;95(2):366–73.Sheyn U, Rosenwasser S, Ben-Dor S, Porat Z, Vardi A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 2016;10(7):1742–54.Bellés JM, Garro R, Fayos J, Navarro P, Primo J, Conejero V. Gentisic acid as a pathogen-inducible signal, additional to salicylic acid for activation of plant defenses in tomato. Mol Plant-Microbe Interact. 1999;12(3):227–35.Fayos J, Bellés JM, López-Gresa MP, Primo J, Conejero V. Induction of gentisic acid 5-O-beta-D-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry. 2006;67(2):142–8.Bartsch M, Bednarek P, Vivancos PD, Schneider B, von Roepenack-Lahaye E, Foyer CH, Kombrink E, Scheel D, Parker JE. Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O-beta-D-xyloside in arabidopsis resistance to pathogens and ageing of leaves. J Biol Chem. 2010;285(33):25654–65.Dachineni R, Kumar DR, Callegari E, Kesharwani SS, Sankaranarayanan R, Seefeldt T, Tummala H, Bhat GJ. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer. Int J Oncol. 2017;51(6):1661–73.Lorenc-Kukula K, Zuk M, Kulma A, Czemplik M, Kostyn K, Skala J, Starzycki M, Szopa J. Engineering flax with the GT family 1 Solanum sogarandinum glycosyltransferase SsGT1 confers increased resistance to Fusarium infection. J Agric Food Chem. 2009;57(15):6698–705.Song JT, Koo YJ, Seo HS, Kim MC, Choi YD, Kim JH. Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae. Phytochemistry. 2008;69(5):1128–34.Hirade Y, Kotoku N, Terasaka K, Saijo-Hamano Y, Fukumoto A, Mizukami H. Identification and functional analysis of 2-hydroxyflavanone C-glucosyltransferase in soybean (Glycine max). FEBS Lett. 2015;589(15):1778–86.Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56(11):317–33.Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22:19–34.Wang Y, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol. 2011;91(4):949–56.Treutter D. Significance of flavonoids in plant resistance: a review. Environ Chem Lett. 2006;4(3):147.Bollina V, Kushalappa AC. In vitro inhibition of trichothecene biosynthesis in Fusarium graminearum by resistance-related endogenous metabolites identified in barley. Mycology. 2011;2(4):291–6.Bilska K, Stuper-Szablewska K, Kulik T, Busko M, Zaluski D, Jurczak S, Perkowski J. Changes in phenylpropanoid and trichothecene production by Fusarium culmorum and F. graminearum sensu stricto via exposure to flavonoids. Toxins. 2018;10(3):110–22.French CJ, Elder M, Leggett F, Ibrahim RK, Neil Towers GH. Flavonoids inhibit infectivity of tobacco mosaic virus. Can J Plant Pathol. 1991;13(1):1–6.Ko CH, Shen SC, Hsu CS, Chen YC. Mitochondrial-dependent, reactive oxygen species-independent apoptosis by myricetin: roles of protein kinase C, cytochrome c, and caspase cascade. Biochem Pharmacol. 2005;69(6):913–27.López-Gresa MP, Torres C, Campos L, Lisón P, Rodrigo I, Bellés JM, Conejero V. Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ Exp Bot. 2011;74:216–28.Chitarrini G, Nobili C, Pinzari F, Antonini A, De Rossi P, Del Fiore A, Procacci S, Tolaini V, Scala V, Scarpari M, et al. Buckwheat achenes antioxidant profile modulates Aspergillus flavus growth and aflatoxin production. Int J Food Microbiol. 2014;189:1–10.Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H. Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Mol Plant Pathol. 2010;11(6):769–82.Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One. 2012;7(7):e40695.Huang F-C, Giri A, Daniilidis M, Sun G, Härtl K, Hoffmann T, Schwab W. Structural and functional analysis of UGT92G6 suggests an evolutionary link between mono- and disaccharide glycoside-forming transferases. Plant Cell Physiol. 2018;59(4):862–75.Dhaubhadel S, Farhangkhoee M, Chapman R. Identification and characterization of isoflavonoid specific glycosyltransferase and malonyltransferase from soybean seeds. J Exp Bot. 2008;59(4):981–94.Bellés JM, Garro R, Pallás V, Fayos J, Rodrigo I, Conejero V. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta. 2006;223(3):500–11.Gu YQ, Yang C, Thara VK, Zhou J, Martin GB. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell. 2000;12(5):771–86.Ntoukakis V, Mucyn TS, Gimenez-Ibanez S, Chapman HC, Gutierrez JR, Balmuth AL, Jones AM, Rathjen JP. Host inhibition of a bacterial virulence effector triggers immunity to infection. Science. 2009;324(5928):784–7.López-Gresa MP, Lisón P, Campos L, Rodrigo I, Rambla JL, Granell A, Conejero V, Bellés JM. A non-targeted metabolomics approach unravels the VOCs associated with the tomato immune response against Pseudomonas syringae. Front Plant Sci. 2017;8:1188.Soler S, Díez MJ, Roselló S, Nuez F. Movement and distribution of tomato spotted wilt virus in resistant and susceptible accessions of Capsicum spp. Can J Plant Pathol. 1999;21(4):317–25.Campos L, Granell P, Tárraga S, López-Gresa P, Conejero V, Bellés JM, Rodrigo I, Lisón P. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiol Biochem. 2014;77:35–43.Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, Tabata R, Kawai T, Tanaka K, Niwa Y, et al. Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem. 2007;71(8):2095–100.Helliwell C, Waterhouse P. Constructs and methods for high-throughput gene silencing in plants. Methods. 2003;30(4):289–95.Lakatos L, Szittya G, Silhavy D, Burgyan J. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 2004;23(4):876–84.Ellul P, Garcia-Sogo B, Pineda B, Rios G, Roig LA, Moreno V. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum Mill.) is genotype and procedure dependent. Theor Appl Genet. 2003;106(2):231–8.Yalpani N, Schulz M, Davis MP, Balke NE. Partial purification and properties of an inducible uridine 5′-diphosphate-glucose-salicylic acid glucosyltransferase from oat roots. Plant Physiol. 1992;100(1):457–63.Campos L, Lisón P, López-Gresa MP, Rodrigo I, Zacarés L, Conejero V, Bellés JM. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. Mol Plant-Microbe Interact. 2014;27(10):1159–69.Conejero V, Semancik J. Analysis of the proteins in crude plant extracts by polyacrylamide gel electrophoresis. Phytopathology. 1977;67:1424–6.Yalpani N, Leon J, Lawton

    Downregulation of Tomato STEROL GLYCOSYLTRANSFERASE 1 Perturbs Plant Development and Facilitates Viroid Infection

    Full text link
    [EN] Potato spindle tuber viroid (PSTVd) is a plant pathogen naturally infecting economically important crops such as tomato (Solanum lycopersicum). Here, we aimed to engineer tomato plants highly resistant to PSTVd and developed several S. lycopersicum lines expressing an artificial microRNA (amiRNA) against PSTVd (amiR-PSTVd). Infectivity assays revealed that amiR-PSTVd-expressing lines were not resistant but rather hypersusceptible to the viroid. A combination of phenotypic, molecular and metabolic analyses of amiRNAexpressing lines non-inoculated with the viroid revealed that amiR-PSTVd was accidentally silencing the tomato STEROL GLYCOSYLTRANSFERASE 1 (SlSGT1) gene, which caused late developmental and reproductive defects such as leaf epinasty, dwarfism or reduced fruit size. Importantly, two independent transgenic tomato lines each expressing a different amiRNA specifically designed to target SlSGT1 were also hypersusceptible to PSTVd, thus confirming that downregulation of SlSGT1 was responsible for the viroid hypersusceptibility phenotype. Our results highlight the role of SGTs in proper plant development and indicate that the unbalance of sterol glycosylation levels favors viroid infection most likely by facilitating viroid movement.Cisneros, AE.; Lisón, P.; Campos, L.; López-Tubau, JM.; Altabella, T.; Ferrer, A.; Daròs, J.... (2022). Downregulation of Tomato STEROL GLYCOSYLTRANSFERASE 1 Perturbs Plant Development and Facilitates Viroid Infection. Journal of Experimental Botany. 1-37. https://doi.org/10.1093/jxb/erac36113

    Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses

    Full text link
    [EN] Background and aims: Morphological and biochemical traits of four halophytes of the genus Limonium were analysed in plants sampled from salt marshes in SE Spain. This work aimed to explore the mechanism(s) behind the adaptation of these species to stressful habitats, with particular emphasis on responses to drought. Methods: Plants of each species together with soil samples were collected in summer, which is the most stressful season in the Mediterranean. Soil parameters and plant morphological traits were determined, and the levels of several biochemical stress markers in plants were measured using spectrophotometric assays. A multivariate analysis was performed to correlate soil and plant data. Results: Morphological characteristics regarding the underground system topology and several biochemical traits (higher foliar Ca2+, sucrose and glucose, and lower proline, glycine-betaine and fructose) clearly separate L. santapolense individuals from plants of the other three species. Conclusions: Drought tolerance of L. santapolense in the field is mostly dependent on morphological adaptations: when growing in an arid location, plants of this species develop long taproots that can extract water from the deep, moist layers of the soil.This research was partly supported by the project AICO/2017/039 from Generalitat Valenciana. We are indebted to Dr. Inmaculada Bautista (Universitat Politècnica de Valencia, Spain) for her useful suggestions for improving the manuscript.González-Orenga, S.; Llinares Palacios, JV.; Al Hassan, M.; Fita, A.; Collado, F.; Lisón, P.; Vicente, O.... (2020). Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses. Plant and Soil. 449(1-2):267-284. https://doi.org/10.1007/s11104-020-04486-4S2672844491-2Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K (2009) Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol Plant 53:243–248Al Hassan M, López-Gresa MP, Boscaiu M, Vicente O (2016) Stress tolerance mechanisms in Juncus: responses to salinity and drought in three Juncus species adapted to different natural environments. Funct Plant Biol 43:949–960Al Hassan M, Estrelles E, Soriano P, López-Gresa MP, Bellés JM, Boscaiu M, Vicente O (2017) Unraveling salt tolerance mechanisms in halophytes: a comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Front Plant Sci 8:1438. https://doi.org/10.3389/fpls.2016.00473Alarcon JJ, Morales MA, Torrecillas A, Sánchez-Blanco MJ (1999) Growth, water relations and accumulation of organic and inorganic solutes in the halophyte Limonium latifolium cv. Avignon and its interspecific hybrid Limoniun caspia x Limonium latifolium cv. Beltlaard during salt stress. J Plant Physiol 154:795–780Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration – guidelines for computing crop water requirements. FAO irrigation and drainage paper 56. Rome, Italy: Food and agriculture Organization of the United NationsAlvarez-Flores R, Nguyen-Thi-Truc N, Peredo-Parada S, Joffre R, Winkel T (2018) Rooting plasticity in wild and cultivated Andean Chenopodium species under soil water deficit. Plant Soil 425:479–492Álvarez-Rogel J, Hernández J, Ortiz Silla R, Alcaraz F (1997) Patterns of spatial and temporal variations in soil salinity: example of a salt marsh in a semiarid climate. Arid Soil Res Rehabil 11:315–329Álvarez-Rogel J, Alcaraz Ariza F, Ortiz Silla R (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 20:357–372Antonelli-Ushirobira TM, Blainski A, Gancedo NC, Gaburo F, Cardoso KAK, Leite-Mello EVD, Milaneze-Gutierre MA (2015) Morpho-anatomical study of rhizome of Limonium brasiliense. Rev Bras 25:320–327Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169e193Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207Blainski A, Lopes GC, de Mello JCP (2013) Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 18:6852–6865Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465Bresler E, Dagan G, Hanks RJ (1982) Análisis estadístico del rendimiento de cultivos bajo riego de fuente de línea controlada. Soil Sci Soc Am J 46:841–847Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257Dubois M, Gilles KA, Hamilton JK, Reberd PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356Eber W, Veenhuis B (1991) Natalität und Mortalität bei Limonium vulgare. In: Schmid B, Stöcklin J (eds) Populationsbiologie der Pflanzen. Birkhäuser, Basel, pp 62–73Erben M (1993) Limonium Mill. In: Castroviejo S et al (eds) Flora Ibérica 3. Real Jardín Botánico, CSIC 2–143, MadridFalchi M, Bertelli A, Lo Scalzo R, Morassut M, Morelli R, Das S, Cui J, Das DK (2006) Comparison of cardioprotective abilities between the flesh and skin of grapes. J Agric Food Chem 54:6613–6622Ferriol M, Pérez I, Merle H, Boira H (2006) Ecological germination requirements of the aggregate species Teucrium pumilum (Labiatae) endemic to Spain. Plant Soil 284:205–216Fita A, Alonso J, Martínez I, Avilés JA, Mateu MC, Rodríguez-Burruezo A (2013) Evaluating Capsicum spp. root architecture under field conditions. Breakthroughs in the genetics and breeding of Capsicum and eggplant (Proceedings of the 15 Eucarpia meeting) 373–376Fitter AH (1987) An architectural approach to the comparative ecology of plant root system. New Phytol 106:61–77Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963Flowers TJ, Yeo AR (1986) Ion relations of plants drought and salinity. Aust J Plant Physiol 13:75–91Franco JA, Vicente MJ, Bañon S, Miralles J (2011) Root development in horticultural plants grown under abiotic stress conditions – a review. J Hortic Sci Biotechnol 86:543–556Fry EL, Evans AL, Sturock CJ, Bullock JM, Bradgett RD (2018) Root architecture governs plasticity in response to drought. Plant Soil 433:189–200Giacobbe A (1938) Schema di una teoria ecologica per la classificazione della vegetatione italiana. Nouvo Giornale Botanico Italiano 45:37–121Giacobbe A (1959) Nouvelles recherces écologiques sur l’aridité dans les pays de la Méditerranée occidentale. Nat Monsp 11:7–28González-Orenga S, Al Hassan M, Llinares JV, Lisón P, López-Gresa MP, Verdeguer M, Vicente O, Boscaiu M (2019) Qualitative and quantitative differences in osmolytes accumulation and antioxidant activities in response to water deficit in four Mediterranean Limonium species. Plants 8(11):506Greuter W, Burdet HM, Long G (1989) Med-checklist. In: Genève. Conservatoire et Jardin Botaniques de la Ville de Genève, GenèveGrieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307Grigore MN, Toma C (2017) Definition and classification of halophytes. In: Grigore MN, Toma C (eds) Anatomical adaptations of halophytes. A review of classic literature and recent findings. Springer International e-book 3–28, New YorkHadi MR, Karimi N (2012) The role of calcium in plants’ salt tolerance. J Plant Nutr 35:2037–2054Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA (2015) Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants 19:7. https://doi.org/10.1093/aobpla/plv004Hanson DA, Rathinasabapathi B, Chamberlin B, Gage DA (1991) Comparative physiological evidence that ß-alanin betaine and choline-O-sulfate act as compatible osmolytes in halophytic Limonium species. Plant Physiol 97:1199–1205Hasegawa PH, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499Hazelton PA, Murphy BW (2007) Interpreting soil test results: what do all the numbers mean? 1 CSIRO Publishing, MelbourneHill MO, Preston CD, Roy DB (2004) PLANTATT – attributes of British and Irish plants: status, size, life history, geography and habitats. Centre for ecology and hydrology, HuntingdonHodges DM, De Long JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive- substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611IGME (1973). Mapa geológico de Elche (Hoja 893). Available at http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id=893. Accessed 20 Nov 2019IGME (1974). Mapa geológico de Valencia (Hoja 722). Available at http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id=722. Accessed 20 Nov 2018Leng BY, Yuan F, Dong XX, Wang J, Wang BS (2018) Distribution pattern and salt excretion rate of salt glands in two recretohalophyte species of Limonium (Plumbaginaceae). S Afr J Bot 115:74–80Liu X, Grieve C (2009) Accumulation of chiro-inositol and other nonstructural carbohydrates in Limonium species in response to saline irrigation waters. J Am Soc Hortic Sci 134:329–336Magalhães TM, Seifert T (2015) Below- and aboveground architecture of Androstachys johnsonii Prain: topological analysis of the root and shoot systems. Plant Soil 394:257–269Mateo C, Crespo MB (2014) Claves Ilustradas para la Flora Valenciana. Jolube Consultor y Editor Botánico, JacaMonllor M, Soriano P, Llinares JV, Boscaiu M, Estrelles E (2018) Assessing effects of temperature change on four Limonium species from threatened Mediterranean salt-affected habitats. Not Bot Horti Agrobo 46:286–291Nawaz K, Ashraf M (2010) Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci 196:28–37Prieto I, Padilla FM, Armas C, Pugnaire FI (2011) The role of hydraulic lift on seedling establishment under a nurse plant species in a semi-arid environment. Perspect Plant Ecol 13:181–187Rhoades JD (1982) Cation exchange capacity. In: Page AL (ed) Methods of soil analysis. Part 2: chemical and microbiological properties, 2nd edn, pp 149–157Rivas-Martínez S, Rivas-Saenz S (1996-2018) Worldwide bioclimatic classification system, Phytosociological Research Center, Spain. Available at http://www.globalbioclimatics.org. Accessed 20 Nov 2018Sagar B, Kedare B, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48:412–422Schmidt JE, Gaudin ACM (2017) Toward an integrated root ideotype for irrigated systems. Trends Plant Sci 22:433–443SIAR (Sistema de Información Agroclimática para Regadío) (2018). Benifaio and Elx agro-meteorological stations. Available at http://www.magrama.gob.es/es/agua/temas/observatorio-del-regadio-espanol/sistema-de-informacion-agroclimatica-para-el-regadio/. Accessed 15 Jan 2019Soil Survey Division Staff (1993) Soil survey manual. USDA. Handb. No. 18. GPO, Washington, DCSuzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51Suzuki JI, Stuefer JF (1999) On the ecological and evolutionary significance of storage in clonal plants. Plant Spec Biol 14:11–17Thorne KM, Takekava JY, Elliot-Fisk DL (2012) Ecological effects of climate change on salt marsh wildlife: a case study from a highly urbanized estuary. J Coast Res 28(6):1477–1487Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38Weimberg R (1987) Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiol Plant 70:381–388Wyn-Jones RG, Gorham J (2002) Intra- and inter-cellular compartmentation of ions. In: Läuchli A, Lüttge U (eds) Salinity: environment — plants — molecules. Kluwer Academic Publishers, Dordrecht, pp 159–180Yáñez J (1989) Análisis de suelos y su interpretación. Horticultura 49:75–89Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559Zia S, Egan T, Khan MA (2008) Growth and selective ion transport of Limonium stocksii under saline conditions. Pak J Bot 40:697–70

    Bacillus subtilis IAB/BS03 as a potential biological control agent

    Full text link
    [EN] We describe the efficacy of Bacillus subtilis strain IAB/BS03 in reducing disease incidence of B. subtilis IAB/BS03 as a foliar treatment against Botrytis cinerea and Pseudomonas syringae on greenhouse-grown tomato (Solanum lycopersicon) plants. We also tested the effect of foliar treatments on lettuce (Lactuca sativa) against lettuce downy mildew caused by Bremia lactucae in multiple trials under different field conditions. All the assays indicated that B. subtilis IAB/BS03 reduced disease. To ascertain the mechanism of action, the induction of pathogenesis-related (PR) proteins, the accumulation of salicylic acid and the activation of peroxidase caused by foliar or root treatments with B. subtilis IAB/BS03 were studied in tomato. A salicylic acid-independent induction of the antifungal protein PR1 was observed after treatment with B. subtilis IAB/BS03, with the strongest induction due to root treatment compared with foliar application. A metabolic analysis of B. subtilis IAB/BS03 culture broth using Ultra Performance Liquid Chromatography coupled with ultraviolet and mass spectrometric detection determined surfactin and iturin A isomers. These compounds have been described as antifungal and antibiotic lipopeptides. The results indicated that B. subtilis IAB/BS03 could be effectively used as a biocontrol agent.This work was funded by IAB S. L. (Investigaciones y Aplicaciones Biotecnologicas, S. L.), and by grant BIO2012-33419 from the Spanish Ministry of Economy and Competitiveness. Mayte Castellano was the recipient of a research grant also funded by IAB S. L. The authors would like to thank Cristina Torres (IBMCP, UPV-CSIC) for her excellent technical assistance.Hinarejos, E.; Castellano Pérez, M.; Rodrigo Bravo, I.; Belles Albert, JM.; Conejero Tomás, V.; López-Gresa, MP.; Lisón, P. (2016). Bacillus subtilis IAB/BS03 as a potential biological control agent. European Journal of Plant Pathology. 146(3):597-608. https://doi.org/10.1007/s10658-016-0945-3S5976081463Abbott, W. S. (1925). A method for computing the effectiveness of an insecticide. Journal Economic Entomology, 18, 265–267.Chen, H., Wang, L., Su, C.X., Gong, G. H., Wang, P., Yu, Z. L. (2008). Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Letters in Applied Microbiology. 47, 180–186.Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H., & Shin, K. S. (2003). Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin a from Bacillus subtilis strain KS03. FEMS Microbiology Letters, 223, 47–51.Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiology Research, 164, 493–513.Coego, A., Ramírez, V., Ellul, P., Mayda, E., & Vera, P. (2005). The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. The Plant Journal, 42, 283–293.Conrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends in Plant Science, 7, 210–216.Fleming, A. J., Mandel, T., Roth, I., & Kuhlemier, C. (1993). The patterns of gene expression in the tomato shoot apical meristem. The Plant Cell, 5, 297–309.Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359.Hammerschmidt, R., Nuckles, E. M., & Kuc, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 20, 73–76.Kawagoe, Y., Shiraishi, S., Kondo, H., Yamamoto, S., Aoki, Y., & Suzuki, S. (2015). Cyclic lipopeptide iturin a structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochemical and Biophysical Research Communications, 460, 1015–1020.Kloepper, J. W., Ryu, C. M., & Zhang, S. A. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.Liu, H.-X., Li, S.-M., Luo, Y.-M., Luo, L.-X., Li, J.-Q., & Guo, J.-H. (2014). Biological control of Ralstonia wilt, Phytophthora blight, Meloidogyne root-knot on bell pepper by the combination of Bacillus subtilis AR12, Bacillus subtilis SM21 and Chryseobacterium sp. R89. European Journal of Plant Pathology, 139, 107–116.Mohammadi, M., & Kazemi, H. (2002). Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science, 162, 491–498.Niderman, T., Genetet, I., Bruyere, T., Gees, R., Stintzi, A., Legrand, M., et al. (1995). Pathogenesis-related PR-1 proteins are antifungal - isolation and characterization of 3 14-Kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology, 108, 17–27.Ohno, A., Ano, T., & Shoda, M. (1995). Effect of temperature on production of lipopeptide antibiotics, iturin a and surfactin by a dual producer, Bacillus subtilis Rb14, in solid-state fermentation. Journal of Fermentation and Bioengineering, 80, 517–519.Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Current Opinion in Biotechnology, 22, 187–193.Phister, T. G., O’Sullivan, D. J., & McKay, L. L. (2004). Identification of bacilysin, chlorotetaine, and iturin a produced by Bacillus sp strain CS93 isolated from pozol, a Mexican fermented maize dough. Applied Environmental Microbiology, 70, 631–634.Pieterse, C. M. J., vanWees, S. C. M., Hoffland, E., Van Pelt, J. A., & Van Loon, L. C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. The Plant Cell, 8, 1225–1237.Pryor, S. W., Gibson, D. M., Krasnoff, S. B., & Walker, L. P. (2006). Identification of antifungal compounds in a biological control product using a microplate inhibition bioassay. Transactions of the ASAE, 49, 1643–1649.Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10, 372–379.Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Paul W, P., et al. (2010). The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicative and Integrative Biology, 3, 130–138.Summermatter, K., Sticher, L., & Métraux, J. P. (1995). Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiology, 108, 1379–1385.Tang, J. S., Zhao, F., Gao, H., Dai, Y., Yao, Z. H., Hong, K., et al. (2010). Characterization and online detection of surfactin isomers based on HPLC-MSn analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF-α and IL-6 in LPS induced macrophages. Marine Drugs, 8, 2605–2618.Tornero, P., Gadea, J., Conejero, V., & Vera, P. (1997). Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Molecular Plant-Microbe Interactions, 10, 624–634.Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: a review. Applied Biochemistry and Microbiology, 42, 117–126.Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H. S., Van Loon, L. C., & Pieterse, C. M. J. (2004). The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 17, 895–908.Wulff, B. B. H., Horvath, D. M., & Ward, E. R. (2011). Improving immunity in crops: new tactics in an old game. Current Opinion in Plant Biology, 14, 468–476.Yáñez-Mendizábal, V., Zeriouh, H., Viñas, I., Torres, R., Usall, J., de Vicente, A., et al. (2012). Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 132, 609–619.Zacarés, L., López-Gresa, M. P., Fayos, J., Primo, J., Bellés, J. M., & Conejero, V. (2007). Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions, 20, 1439–1448.Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.Zeriouh, H., Romero, D., García-Gutiérrez, L., Cazorla, F. M., De Vicente, A., & Pérez-García, A. (2011). The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular Plant-Microbe Interactions, 24, 1540–1552
    corecore