148 research outputs found
DOES PLAYING MATH GAMES IMPROVE STUDENTSâATTITUDES TOWARDS MATHEMATICS?
Abstract
In the last few years, math games have been introduced in the classroom as a way for students to have a fun and engaging means to practice math concepts. The purpose of our research was to understand the effects on studentsâ attitudes towards math after math games have been implemented into the curriculum. The questions we asked were:
Does playing math games help improve studentsâ attitudes towards mathematics?
Does the enjoyment of math correspond with higher math scores?
We used multiple surveys to conduct our research and collect data. The surveys were given to third and fifth-grade students at the American School Foundation of Monterrey in Mexico and Colegio Jorge Washington in Cartagena, Colombia, two international schools with an American curriculum. In analyzing the data, we did not find conclusive evidence as to whether playing math games in school enhances studentsâ attitudes towards math. Although the data suggests a decline in attitudes, there were too many variables affecting the outcome to charge playing math games as the reason. While addressing the question of whether or not studentsâ math scores correlate with their attitudes towards math, we found that the majority of students with a higher understanding of math concepts in a unit had a more positive attitude towards math
Treatment of child victims of abuse and neglect
This publication reviews the effects of and treatment for various types of child victimization experiences. It will be helpful to child protection workers, guardians ad litem, attorneys, family court judges, and others involved with children who have been abused or neglected. This information will enhance the ability of child protection professionals to recognize a need for mental health treatment and to seek appropriate treatment services. This publication will also enable other professionals to better communicate with therapists about a childâs needs and progress
Tidal and thermal stresses drive seismicity along a major Ross Ice Shelf rift
Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(12), (2019): 6644-6652, doi:10.1029/2019GL082842.Understanding deformation in ice shelves is necessary to evaluate the response of ice shelves to thinning. We study microseismicity associated with ice shelf deformation using nine broadband seismographs deployed near a rift on the Ross Ice Shelf. From December 2014 to November 2016, we detect 5,948 icequakes generated by rift deformation. Locations were determined for 2,515 events using a least squares gridâsearch and doubleâdifference algorithms. Ocean swell, infragravity waves, and a significant tsunami arrival do not affect seismicity. Instead, seismicity correlates with tidal phase on diurnal time scales and inversely correlates with air temperature on multiday and seasonal time scales. Spatial variability in tidal elevation tilts the ice shelf, and seismicity is concentrated while the shelf slopes downward toward the ice front. During especially cold periods, thermal stress and embrittlement enhance fracture along the rift. We propose that thermal stress and tidally driven gravitational stress produce rift seismicity with peak activity in the winter.NSF grants PLRâ1142518, 1141916, and 1142126 supported S. D. Olinger and D. A. Wiens, R. C. Aster, and A. A. Nyblade respectively. NSF grant PLRâ1246151 supported P. D. Bromirski, P. Gerstoft, and Z. Chen. NSF grant OPPâ1744856 and CALâDPRâC1670002 also supported P. D. Bromirski. NSF grant PLRâ1246416 supported R. A. Stephen. The Incorporated Research Institutions for Seismology (IRIS) and the PASSCAL Instrument Center at New Mexico Tech provided seismic instruments and deployment support. The RIS seismic data (network code XH) are archived at the IRIS Data Management Center (http://ds.iris.edu/ds/nodes/dmc/). S. D. Olinger catalogued and located icequakes, analyzed seismicity and environmental forcing, and drafted the manuscript. D. A. Wiens and B. P. Lipovsky provided significant contributions to the analysis and interpretation of results and to the manuscript text. D. A. Wiens, R. C. Aster, A. A. Nyblade, R. A. Stephen, P. Gerstoft, and P. D. Bromirski collaborated to design and obtain funding for the deployment. D. A. Wiens, R. C. Aster, R. A. Stephen, P. Gerstoft, P. D. Bromirski, and Z. Chen deployed and serviced seismographs in Antarctica. All authors provided valuable feedback, comments, and edits to the manuscript text. Special thanks to Patrick Shore for guidance throughout the research process.2019-11-2
Towards an Inverse Scattering theory for non decaying potentials of the heat equation
The resolvent approach is applied to the spectral analysis of the heat
equation with non decaying potentials. The special case of potentials with
spectral data obtained by a rational similarity transformation of the spectral
data of a generic decaying potential is considered. It is shown that these
potentials describe solitons superimposed by Backlund transformations to a
generic background. Dressing operators and Jost solutions are constructed by
solving a DBAR-problem explicitly in terms of the corresponding objects
associated to the original potential. Regularity conditions of the potential in
the cases N=1 and N=2 are investigated in details. The singularities of the
resolvent for the case N=1 are studied, opening the way to a correct definition
of the spectral data for a generically perturbed soliton.Comment: 22 pages, submitted to Inverse Problem
Chern - Simons Gauge Field Theory of Two - Dimensional Ferromagnets
A Chern-Simons gauged Nonlinear Schr\"odinger Equation is derived from the
continuous Heisenberg model in 2+1 dimensions. The corresponding planar magnets
can be analyzed whithin the anyon theory. Thus, we show that static magnetic
vortices correspond to the self-dual Chern - Simons solitons and are described
by the Liouville equation. The related magnetic topological charge is
associated with the electric charge of anyons. Furthermore, vortex - antivortex
configurations are described by the sinh-Gordon equation and its conformally
invariant extension. Physical consequences of these results are discussed.Comment: 15 pages, Plain TeX, Lecce, June 199
How to superize Liouville equation
So far, there are described in the literature two ways to superize the
Liouville equation: for a scalar field (for ) and for a vector-valued
field (analogs of the Leznov--Saveliev equations) for N=1. Both superizations
are performed with the help of Neveu--Schwarz superalgebra. We consider another
version of these superLiouville equations based on the Ramond superalgebra,
their explicit solutions are given by Ivanov--Krivonos' scheme. Open problems
are offered
Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function
One of the main pathways by which engineered nanoparticles (ENPs) enter the environment is through land application of waste water treatment plant (WWTP) sewage sludges. WWTP sludges, enriched with Ag and ZnO ENPs or their corresponding soluble metal salts during anaerobic digestion and subsequently mixed with soil (targeting a final concentration of 1400 and 140 mg/kg for Zn and Ag, respectively), were subjected to 6 months of ageing and leaching in lysimeter columns outdoors. Amounts of Zn and Ag leached were very low, accounting for <0.3% and <1.4% of the total Zn and Ag, respectively. No differences in total leaching rates were observed between treatments of Zn or Ag originally input to WWTP as ENP or salt forms. Phospholipid fatty acid profiling indicated a reduction in the fungal component of the soil microbial community upon metal exposure. However, overall, the leachate composition and response of the soil microbial community following addition of sewage sludge enriched either with ENPs or metal salts was very similar
Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis.
Streptococcus pneumoniae is a common nasopharyngeal colonizer, but can also cause life-threatening invasive diseases such as empyema, bacteremia and meningitis. Genetic variation of host and pathogen is known to play a role in invasive pneumococcal disease, though to what extent is unknown. In a genome-wide association study of human and pathogen we show that human variation explains almost half of variation in susceptibility to pneumococcal meningitis and one-third of variation in severity, identifying variants in CCDC33 associated with susceptibility. Pneumococcal genetic variation explains a large amount of invasive potential (70%), but has no effect on severity. Serotype alone is insufficient to explain invasiveness, suggesting other pneumococcal factors are involved in progression to invasive disease. We identify pneumococcal genes involved in invasiveness including pspC and zmpD, and perform a human-bacteria interaction analysis. These genes are potential candidates for the development of more broadly-acting pneumococcal vaccines
A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days
Climate change is increasingly predisposing polar regions to large landslides. Tsunamigenic landslides have occurred recently in Greenland (Kalaallit Nunaat), but none have been reported from the eastern fjords. In September 2023, we detected the start of a 9-day-long, global 10.88-millihertz (92-second) monochromatic very-long-period (VLP) seismic signal, originating from East Greenland. In this study, we demonstrate how this event started with a glacial thinningâinduced rock-ice avalanche of 25 Ă 106 cubic meters plunging into Dickson Fjord, triggering a 200-meter-high tsunami. Simulations show that the tsunami stabilized into a 7-meter-high long-duration seiche with a frequency (11.45 millihertz) and slow amplitude decay that were nearly identical to the seismic signal. An oscillating, fjord-transverse single force with a maximum amplitude of 5 Ă 1011 newtons reproduced the seismic amplitudes and their radiation pattern relative to the fjord, demonstrating how a seiche directly caused the 9-day-long seismic signal. Our findings highlight how climate change is causing cascading, hazardous feedbacks between the cryosphere, hydrosphere, and lithosphere.acceptedVersio
- âŠ