A Chern-Simons gauged Nonlinear Schr\"odinger Equation is derived from the
continuous Heisenberg model in 2+1 dimensions. The corresponding planar magnets
can be analyzed whithin the anyon theory. Thus, we show that static magnetic
vortices correspond to the self-dual Chern - Simons solitons and are described
by the Liouville equation. The related magnetic topological charge is
associated with the electric charge of anyons. Furthermore, vortex - antivortex
configurations are described by the sinh-Gordon equation and its conformally
invariant extension. Physical consequences of these results are discussed.Comment: 15 pages, Plain TeX, Lecce, June 199