88 research outputs found

    Housing mice in the individually ventilated or open cages—Does it matter for behavioral phenotype?

    Get PDF
    Individually ventilated caging (IVC) systems for rodents are increasingly common in laboratory animal facilities. However, the impact of such substantial change in housing conditions on animal physiology and behavior is still debated. Most importantly, there arise the questions regarding reproducibility and comparison of previous or new phenotypes between the IVC and open cages. The present study was set up for detailed and systematic comparison of behavioral phenotypes in male and female mice of three widely used inbred strains (C57BL/6JRccHsd, DBA/2JRccHsd, 129S2/SvHSd) after being kept in two housing environments (IVC and open cages) for 6?weeks (since 4?weeks of age) before behavioral testing. The tests addressed exploratory, anxiety-like and stress-related behavior (light-dark box, open field, forced swim test, stress-induced hyperthermia), social approach and species-specific behavior (nest building, marble burying). In all tests, large and expected strain differences were found. Somewhat surprisingly, the most striking effect of environment was found for basal body temperature and weight loss after one night of single housing in respective cages. In addition, the performance in light-dark box and open field was affected by environment. Several parameters in different tests showed significant interaction between housing and genetic background. In summary, the IVC housing did not invalidate the well-known differences between the mouse strains which have been established by previous studies. However, within the strains the results can be influenced by sex and housing system depending on the behavioral tasks applied. The bottom-line is that the environmental conditions should be described explicitly in all publications.Peer reviewe

    Genome Sequence of Erythromelalgia-Related Poxvirus Identifies it as an Ectromelia Virus Strain

    Get PDF
    Erythromelagia is a condition characterized by attacks of burning pain and inflammation in the extremeties. An epidemic form of this syndrome occurs in secondary students in rural China and a virus referred to as erythromelalgia-associated poxvirus (ERPV) was reported to have been recovered from throat swabs in 1987. Studies performed at the time suggested that ERPV belongs to the orthopoxvirus genus and has similarities with ectromelia virus, the causative agent of mousepox. We have determined the complete genome sequence of ERPV and demonstrated that it has 99.8% identity to the Naval strain of ectromelia virus and a slighly lower identity to the Moscow strain. Small DNA deletions in the Naval genome that are absent from ERPV may suggest that the sequenced strain of Naval was not the immediate progenitor of ERPV

    Hyperspectral Computed Tomographic Imaging Spectroscopy of Vascular Oxygen Gradients in the Rabbit Retina In Vivo

    Get PDF
    Diagnosis of retinal vascular diseases depends on ophthalmoscopic findings that most often occur after severe visual loss (as in vein occlusions) or chronic changes that are irreversible (as in diabetic retinopathy). Despite recent advances, diagnostic imaging currently reveals very little about the vascular function and local oxygen delivery. One potentially useful measure of vascular function is measurement of hemoglobin oxygen content. In this paper, we demonstrate a novel method of accurately, rapidly and easily measuring oxygen saturation within retinal vessels using in vivo imaging spectroscopy. This method uses a commercially available fundus camera coupled to two-dimensional diffracting optics that scatter the incident light onto a focal plane array in a calibrated pattern. Computed tomographic algorithms are used to reconstruct the diffracted spectral patterns into wavelength components of the original image. In this paper the spectral components of oxy- and deoxyhemoglobin are analyzed from the vessels within the image. Up to 76 spectral measurements can be made in only a few milliseconds and used to quantify the oxygen saturation within the retinal vessels over a 10–15 degree field. The method described here can acquire 10-fold more spectral data in much less time than conventional oximetry systems (while utilizing the commonly accepted fundus camera platform). Application of this method to animal models of retinal vascular disease and clinical subjects will provide useful and novel information about retinal vascular disease and physiology

    Volume, patterns, and types of sedentary behavior and cardio-metabolic health in children and adolescents: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardio-metabolic risk factors are becoming more prevalent in children and adolescents. A lack of moderate-to-vigorous intensity physical activity (MVPA) is an established determinant of cardio-metabolic risk factors in children and adolescents. Less is known about the relationship between sedentary behavior and cardio-metabolic health. Therefore, the objective was to examine the independent associations between volume, patterns, and types of sedentary behavior with cardio-metabolic risk factors among children and adolescents.</p> <p>Methods</p> <p>The results are based on 2527 children and adolescents (6-19 years old) from the 2003/04 and 2005/06 National Health and Nutrition Examination Surveys (NHANES). A cardio-metabolic risk score (CRS) was calculated based on age- and sex-adjusted waist circumference, systolic blood pressure, non-high-density lipoprotein cholesterol, and C-reactive protein values. Volume and patterns of sedentary behavior and moderate-to-vigorous physical activity (MVPA) were measured objectively using accelerometers. Types of sedentary behavior were measured by questionnaire. A series of logistic regression models were used to examine associations.</p> <p>Results</p> <p>Volume and patterns of sedentary behavior were not predictors of high CRS after adjusting for MVPA and other confounders (P > 0.1). For types of sedentary behavior, high TV use, but not high computer use, was a predictor of high CRS after adjustment for MVPA and other confounders. Children and adolescents who watched ≥4 hours per day of TV were 2.53 (95% confidence interval: 1.45-4.42) times more likely to have high CRS than those who watched <1 hour per day. MVPA predicted high CRS after adjusting for all sedentary behavior measures and other confounders. After adjustment for waist circumference, MVPA also predicted high non-obesity CRS; however, the same relationship was not seen with TV use.</p> <p>Conclusion</p> <p>No association was observed between overall volume and patterns of sedentary behavior with cardio-metabolic risk factors in this large sample of children and adolescents. Conversely, high TV use and low MVPA were independently associated with cardio-metabolic risk factors. However, the association between high TV use and clustered cardio-metabolic risk factors appears to be mediated or confounded by obesity. Thus, TV and MVPA appear to be two separate behaviors that need to be targeted with different interventions and policies.</p

    Identification of Eps15 as Antigen Recognized by the Monoclonal Antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila Brain

    Get PDF
    The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies

    A Bispecific Antibody Based Assay Shows Potential for Detecting Tuberculosis in Resource Constrained Laboratory Settings

    Get PDF
    The re-emergence of tuberculosis (TB) as a global public health threat highlights the necessity of rapid, simple and inexpensive point-of-care detection of the disease. Early diagnosis of TB is vital not only for preventing the spread of the disease but also for timely initiation of treatment. The later in turn will reduce the possible emergence of multi-drug resistant strains of Mycobacterium tuberculosis. Lipoarabinomannan (LAM) is an important non-protein antigen of the bacterial cell wall, which is found to be present in different body fluids of infected patients including blood, urine and sputum. We have developed a bispecific monoclonal antibody with predetermined specificities towards the LAM antigen and a reporter molecule horseradish peroxidase (HRPO). The developed antibody was subsequently used to design a simple low cost immunoswab based assay to detect LAM antigen. The limit of detection for spiked synthetic LAM was found to be 5.0 ng/ml (bovine urine), 0.5 ng/ml (rabbit serum) and 0.005 ng/ml (saline) and that for bacterial LAM from M. tuberculosis H37Rv was found to be 0.5 ng/ml (rabbit serum). The assay was evaluated with 21 stored clinical serum samples (14 were positive and 7 were negative in terms of anti-LAM titer). In addition, all 14 positive samples were culture positive. The assay showed 100% specificity and 64% sensitivity (95% confidence interval). In addition to good specificity, the end point could be read visually within two hours of sample collection. The reported assay might be used as a rapid tool for detecting TB in resource constrained laboratory settings

    Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study.

    Get PDF
    BACKGROUND: Prognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions. METHODS: We developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal-external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London). FINDINGS: 74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal-external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [-0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than any other reproducible prognostic model. INTERPRETATION: The 4C Deterioration model has strong potential for clinical utility and generalisability to predict clinical deterioration and inform decision making among adults hospitalised with COVID-19. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, NIHR HPRU in Respiratory Infections at Imperial College London
    corecore