107 research outputs found

    Towards an analytical theory of the third-body problem for highly elliptical orbits

    Full text link
    When dealing with satellites orbiting a central body on a highly elliptical orbit, it is necessary to consider the effect of gravitational perturbations due to external bodies. Indeed, these perturbations can become very important as soon as the altitude of the satellite becomes high, which is the case around the apocentre of this type of orbit. For several reasons, the traditional tools of celestial mechanics are not well adapted to the particular dynamic of highly elliptical orbits. On the one hand, analytical solutions are quite generally expanded into power series of the eccentricity and therefore limited to quasi-circular orbits [17, 25]. On the other hand, the time-dependency due to the motion of the third-body is often neglected. We propose several tools to overcome these limitations. Firstly, we have expanded the disturbing function into a finite polynomial using Fourier expansions of elliptic motion functions in multiple of the satellite's eccentric anomaly (instead of the mean anomaly) and involving Hansen-like coefficients. Next, we show how to perform a normalization of the expanded Hamiltonian by means of a time-dependent Lie transformation which aims to eliminate periodic terms. The difficulty lies in the fact that the generator of the transformation must be computed by solving a partial differential equation involving variables which are linear with time and the eccentric anomaly which is not time linear. We propose to solve this equation by means of an iterative process.Comment: Proceedings of the International Symposium on Orbit Propagation and Determination - Challenges for Orbit Determination and the Dynamics of Artificial Celestial Bodies and Space Debris, Lille, France, 201

    Dynamique des orbites fortement elliptiques

    Get PDF
    Most of the orbits of artificial satellites around the Earth have relatively low eccentricities. The calculation of their trajectories is very well under control, either by means of numerical methods when it comes to focus on accuracy and comparing observations, or either through analytical or semi-analytical theories to optimize the speed of calculations. This second category is used, in particular, for computing many long-term trajectories that could help to ensure the security and safety of outer space activities. Furthermore, there is also satellites operating in highly elliptical orbits for which the computations of the trajectories can be significantly improved, especially in analytical theories. Due to the fact that such orbits cover a wide range of altitudes, the hierarchy of the perturbations acting on the satellite changes with the position on the orbit. At low altitude, the oblateness of the Earth (the so-called J2 effect) is the dominant perturbation while on high-altitude the lunisolar perturbation acceleration can reach or exceed the order of the J2 acceleration. Moreover, the traditional analytical theories of Celestial Mechanics are not well adapted to this particular dynamic. Analytical solutions are generally quite developed in Fourier series of the mean anomaly. These infinite series converge very slowly in the general case, but in the case of small eccentricities convergence is accelerated thanks to the d’Alembert characteristic which ensures that a Fourier coefficient of order n keeps a degree of cancellation n with respect to the eccentricity e. This argument is no longer effective for large eccentricities. As is often the case, the solutions are more degraded in the case where the Fourier coefficients are developed in power series of the eccentricity. However, there are also theories whose the developments are made with angular variables other than the mean anomaly and well suited to the considered problem: the true anomaly for the inner potential and the eccentric anomaly for the perturbation due to external body attraction (Moon or Sun, often called third body). However, in this latter case, the methods for developing theories always use another type of approximation. Indeed, the explicit time dependence of the Hamiltonian is neglected for solving the partial differential equations that give the generator of the change of variables.This PhD thesis is devoted to propose several tools to overcome these limitations. Firstly, we expand the third-body disturbing function using Fourier series in multiples of the satellite’s eccentric anomaly (instead of the mean anomaly). We then perform a normalization of the expanded Hamiltonian, which aims to eliminate all periodic terms. To this end, we apply a change of canonical variables based on time-dependent Lie transforms. The construction of the generating function of the change of variables requires solving a partial differential equations (PDE) with respect to the angular variables of the third body and the satellite. To our knowledge this PDE has no exact solution. An approximation is usually done at this step to solve it by neglecting the terms related to the third body. We show how this approximation can be avoided by providing an iterative method for solving the PDE. This amounts to carrying out a power series expansion of a small ratio of frequencies 0.7).Moreover, since the traditional numerical integration methods are not very effective for highly elliptical orbits, even with adaptive variable-step size, we show the benefits of the so-called geometric integrators, especially the variational integrators. To this end, we present some high-order numerical schemes and we test their performance.La plupart des orbites de satellites artificiels autour de la Terre ont des excentricitĂ©s relativement faibles. Le calcul de leurs trajectoires est trĂšs bien maitrisĂ©, soit au moyen de mĂ©thodes numĂ©riques quand il s’agit de privilĂ©gier la prĂ©cision et la comparaison Ă  des observations, soit au moyen de thĂ©ories analytiques ou semi-analytiques pour optimiser la vitesse des calculs. Cette seconde catĂ©gorie est en particulier utilisĂ©e pour le calcul de nombreuses trajectoires Ă  long terme dans le cadre de la sĂ©curitĂ© de l’espace. Par ailleurs, il existe Ă©galement des satellites sur des orbites Ă  forte excentricitĂ© pour lesquels le calcul des trajectoires peut encore ĂȘtre trĂšs nettement amĂ©liorĂ©, en particulier en ce qui concerne les thĂ©ories analytiques. Comme ces orbites couvrent un large spectre d’altitudes, la hiĂ©rarchie des perturbations agissant sur le satellite change selon sa position sur l’orbite ; Ă  basse altitude, la perturbation dominante est due Ă  l’aplatissement de la Terre (appelĂ© l’effet du J2 ) tandis que pour les altitudes Ă©levĂ©es, les perturbations lunisolaires peuvent ĂȘtre aussi importantes et mĂȘme supĂ©rieures Ă  la perturbation de J2 . Par ailleurs, les thĂ©ories analytiques classiques ne sont pas adaptĂ©es pour Ă©tudier la dynamique de ces orbites particuliĂšres. Les solutions analytiques sont assez gĂ©nĂ©ralement dĂ©veloppĂ©es en sĂ©rie de Fourier de l’anomalie moyenne. Ces sĂ©ries infinies convergent assez lentement dans la cas gĂ©nĂ©ral, mais dans le cas des faibles excentricitĂ©s la convergence est accĂ©lĂ©rĂ©e grĂące Ă  la caractĂ©ristique de d’Alembert qui assure qu’un coefficient de Fourier d’ordre n possĂšde un degrĂ© d’annulation n par rapport Ă  l’excentricitĂ© e. Cet argument perd toute son efficacitĂ© pour les fortes excentricitĂ©s. Les solutions sont encore plus dĂ©gradĂ©es dans le cas oĂč les coefficients de Fourier sont dĂ©veloppĂ©s en sĂ©ries entiĂšres de l’excentricitĂ©, comme c’est souvent le cas. NĂ©anmoins, il existe aussi des thĂ©ories dont les dĂ©veloppements sont rĂ©alisĂ©s avec des variables angulaires, autres que l’anomalie moyenne, plus adaptĂ©es au problĂšme Ă©tudiĂ© : l’anomalie vraie pour le potentiel intĂ©rieur et l’anomalie excentrique pour la perturbation d’un corps extĂ©rieur (Lune ou Soleil, souvent appelĂ© troisiĂšme corps). Cependant, dans ce dernier cas, les mĂ©thodes de dĂ©veloppement des thĂ©ories utilisent toujours un autre type d’approximation : la dĂ©pendance temporelle explicite de l’Hamiltonien est nĂ©gligĂ©e dans la rĂ©solution de l’équation aux dĂ©rivĂ©es partielles qui engendre le gĂ©nĂ©rateur du changement de variables.Cette thĂšse est consacrĂ©e au dĂ©veloppement d’outils permettant de surmonter ces limitations. Dans un premier temps, nous dĂ©veloppons la fonction perturbatrice de troisiĂšme corps en utilisant des sĂ©ries de Fourier en multiples de l’anomalie excentrique du satellite (Ă  la place de l’anomalie moyenne). Nous procĂ©dons ensuite Ă  une normalisation du Hamiltonien ainsi dĂ©veloppĂ©, dans le but d’éliminer tous les termes pĂ©riodiques. Pour y parvenir, nous appliquons un changement de variables canoniques construit Ă  l’aide des transformĂ©es de Lie dĂ©pendantes du temps. La construction de la fonction gĂ©nĂ©ratrice du changement de variables nĂ©cessite la rĂ©solution d’une Ă©quation aux dĂ©rivĂ©es partielles (EDP) par rapport aux variables angulaires du troisiĂšme corps et du satellite. A notre connaissance cette EDP n’a pas de solution exacte. Habituellement, Ă  cette Ă©tape, on fait une approximation qui consiste Ă  nĂ©gliger les termes de l’EDP liĂ©s au troisiĂšme corps afin de la rĂ©soudre. Nous montrons comment cette approximation peut ĂȘtre Ă©vitĂ©e, en proposant une mĂ©thode de rĂ©solution de l’EDP itĂ©rative, qui revient Ă  effectuer un dĂ©veloppement en sĂ©rie de puissances d’un rapport de frĂ©quences petit devant 1. De plus, pour une cohĂ©rence globale de la thĂ©orie nous avons dĂ» reconsidĂ©rer la solution classique de potentiel central et en particulier du J2 . Finalement nous obtenons une thĂ©orie qui permet d’extrapoler le mouvement osculateur (et pas seulement le mouvement moyen) sur de longues durĂ©es (des dizaines d’annĂ©es) de façon efficace et avec une excellente prĂ©cision y-compris pour des orbites trĂšs excentriques (e > 0.7).Par ailleurs, les mĂ©thodes d’intĂ©gration numĂ©rique classiques (mĂȘme Ă  pas variable) Ă©tant peu efficaces pour ces problĂšmes Ă  trĂšs forte excentricitĂ©, nous montrons les avantages que procurent les intĂ©grateurs dits gĂ©omĂ©triques, et particuliĂšrement les intĂ©grateurs variationnels. A cette fin, nous prĂ©senterons des schĂ©mas numĂ©riques d’ordre Ă©levĂ© dont nous testons les performances

    Capnocytophaga canimorsus endocarditis with root abscess in a patient with a bicuspid aortic valve

    Get PDF
    Infective endocarditis caused by a zoonotic micro organism is a rare clinical condition. Capnocytophaga canimorsus is a commensal bacterium living in the saliva of dogs and cats which produces rarely reported endocarditis whose incidence may be underestimated, considering its failure to grow on standard media. We reported the case of a 65-year-old man with bicuspid aortic valve endocarditis and multiple abscesses of the aortic wall caused by the canine bacteria C. canimorsus

    The EU Center of Excellence for Exascale in Solid Earth (ChEESE): Implementation, results, and roadmap for the second phase

    Get PDF
    publishedVersio

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8 TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    • 

    corecore