933 research outputs found

    \epsilon-regularity for systems involving non-local, antisymmetric operators

    Full text link
    We prove an epsilon-regularity theorem for critical and super-critical systems with a non-local antisymmetric operator on the right-hand side. These systems contain as special cases, Euler-Lagrange equations of conformally invariant variational functionals as Rivi\`ere treated them, and also Euler-Lagrange equations of fractional harmonic maps introduced by Da Lio-Rivi\`ere. In particular, the arguments presented here give new and uniform proofs of the regularity results by Rivi\`ere, Rivi\`ere-Struwe, Da-Lio-Rivi\`ere, and also the integrability results by Sharp-Topping and Sharp, not discriminating between the classical local, and the non-local situations

    Artificial co-drivers as a universal enabling technology for future intelligent vehicles and transportation systems

    Get PDF
    This position paper introduces the concept of artificial “co-drivers” as an enabling technology for future intelligent transportation systems. In Sections I and II, the design principles of co-drivers are introduced and framed within general human–robot interactions. Several contributing theories and technologies are reviewed, specifically those relating to relevant cognitive architectures, human-like sensory-motor strategies, and the emulation theory of cognition. In Sections III and IV, we present the co-driver developed for the EU project interactIVe as an example instantiation of this notion, demonstrating how it conforms to the given guidelines. We also present substantive experimental results and clarify the limitations and performance of the current implementation. In Sections IV and V, we analyze the impact of the co-driver technology. In particular, we identify a range of application fields, showing how it constitutes a universal enabling technology for both smart vehicles and cooperative systems, and naturally sets out a program for future research

    Global Existence Results and Uniqueness for Dislocation Equations

    Get PDF
    We are interested in nonlocal Eikonal Equations arising in the study of the dynamics of dislocations lines in crystals. For these nonlocal but also non monotone equations, only the existence and uniqueness of Lipschitz and local-in-time solutions were available in some particular cases. In this paper, we propose a definition of weak solutions for which we are able to prove the existence for all time. Then we discuss the uniqueness of such solutions in several situations, both in the monotone and non monotone case

    Analisis Sentimen terhadap Tempat Wisata dari Komentar Pengunjung dengan Menggunakan Metode Naïve Bayes Classifier Studi Kasus Jawa Barat

    Full text link
    Penelitian ini dilakukan untuk memberikan informasi tentang kualitas sebuah tempat wisata yang ada di Jawa Barat. Dengan menggunakan sentimen dari pengunjung, Dinas Pariwisata dan Kebudayaan Provinsi Jawa Barat dapat menentukan langkah apa yang harus diambil untuk memutuskan langkah apa yang harus diambil tanpa harus turun langsung dan melihat satu – persatu. Dengan menggunakan Google Maps sebagai sumber data dalam pembuatan aplikasi, data yang digunakan dalam pembuatan sistem ini yaitu data tempat wisata, sentimen pengunjung dan rating tempat

    Debris Impact Detection Instrument for Crewed Modules

    Get PDF
    When micrometeoroid or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. This is especially important because the outer walls of pressurized volumes are often not easily accessible, blocked by racks or cabinets. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules. The HIMS uses multiple passive, thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA s 2010 and 2011 Desert Research and Technologies Studies (Desert-RATS or D-RATS). The HDU lab module, as seen from above, has an open circular floorplan divided into eight wedge-shaped Segments. The side wall of the module -- the surface used for this technology demonstration -- is a hard fiberglass composite covered with a layer of sprayed-on foam insulation. Four sensor locations were assigned near the corners of a rectangular pattern on the wall of one segment of the HDU lab module. The flat, self-adhesive sensors were applied to the module during its initial outfitting. To study the influence of the wall s construction (thickness and materials), three sets of four sensors were installed at different layer depths: on the interior of the module s wall, on the exterior of the same wall, and on the exterior of the foam insulation. The signal produced when a vibration passes through a sensor is first sent through a pre-amplifier. The amplified signal then is sent to the data acquisition and data processing systems. The vibration data from the sensors are then processed and reduced to a form suitable for presentation to the crew

    Artificial co-drivers as a universal enabling technology for future intelligent vehicles and transportation systems

    Get PDF
    This position paper introduces the concept of artificial “co-drivers” as an enabling technology for future intelligent transportation systems. In Sections I and II, the design principles of co-drivers are introduced and framed within general human–robot interactions. Several contributing theories and technologies are reviewed, specifically those relating to relevant cognitive architectures, human-like sensory-motor strategies, and the emulation theory of cognition. In Sections III and IV, we present the co-driver developed for the EU project interactIVe as an example instantiation of this notion, demonstrating how it conforms to the given guidelines. We also present substantive experimental results and clarify the limitations and performance of the current implementation. In Sections IV and V, we analyze the impact of the co-driver technology. In particular, we identify a range of application fields, showing how it constitutes a universal enabling technology for both smart vehicles and cooperative systems, and naturally sets out a program for future research

    The Tychonoff uniqueness theorem for the G-heat equation

    Full text link
    In this paper, we obtain the Tychonoff uniqueness theorem for the G-heat equation

    The value function of an asymptotic exit-time optimal control problem

    Full text link
    We consider a class of exit--time control problems for nonlinear systems with a nonnegative vanishing Lagrangian. In general, the associated PDE may have multiple solutions, and known regularity and stability properties do not hold. In this paper we obtain such properties and a uniqueness result under some explicit sufficient conditions. We briefly investigate also the infinite horizon problem

    Clinical Reliability of Complete-Arch Fixed Prostheses Supported by Narrow-Diameter Implants to Support Complete-Arch Restorations

    Get PDF
    The aim of this study was to evaluate the clinical application of fixed screw-retained complete-arch rehabilitations supported by four narrow-diameter implants (NDIs). The records of patients treated with complete-arch prostheses screwed onto four NDIs treated with an immediate loading protocol between 2010 and 2020 with at least 1 year of follow-up after the positioning of the definitive restoration were reviewed. The implants were placed according to the final prosthetic design and were immediately loaded. The interim prostheses were replaced after the healing period by definitive acrylic resin titanium-supported prostheses. Patients were followed to evaluate treatment success, the implant survival rate (ISR), and the prosthetic survival rate (PSR). A total of 121 NDIs were positioned in 30 patients to restore 30 complete arches (18 maxilla and 12 mandible). One implant did not achieve osseointegration, resulting in an overall ISR of 99.2%. No prosthetic or implant failures occurred during the 1 to 11 years of follow-up. Three biological and four prosthetic complications occurred, resulting in a treatment rehabilitation survival of 94.1% and a PSR of 86.7%. Despite the limitations of the present retrospective study, such as the use of one single type of dental implant and patients treated in a single rehabilitation center, complete-arch rehabilitation with fixed prostheses supported by four NDIs seems to be a reliable treatment in the medium to long term
    corecore