18 research outputs found
Species delimitation in lemurs: multiple genetic loci reveal low levels of species diversity in the genus Cheirogaleus
<p>Abstract</p> <p>Background</p> <p>Species are viewed as the fundamental unit in most subdisciplines of biology. To conservationists this unit represents the currency for global biodiversity assessments. Even though Madagascar belongs to one of the top eight biodiversity hotspots of the world, the taxonomy of its charismatic lemuriform primates is not stable. Within the last 25 years, the number of described lemur species has more than doubled, with many newly described species identified among the nocturnal and small-bodied cheirogaleids. Here, we characterize the diversity of the dwarf lemurs (genus <it>Cheirogaleus</it>) and assess the status of the seven described species, based on phylogenetic and population genetic analysis of mtDNA (<it>cytb </it>+ <it>cox2</it>) and three nuclear markers (<it>adora3</it>, <it>fiba </it>and <it>vWF</it>).</p> <p>Results</p> <p>This study identified three distinct evolutionary lineages within the genus <it>Cheirogaleus</it>. Population genetic cluster analyses revealed a further layer of population divergence with six distinct genotypic clusters.</p> <p>Conclusion</p> <p>Based on the general metapopulation lineage concept and multiple concordant data sets, we identify three exclusive groups of dwarf lemur populations that correspond to three of the seven named species: <it>C. major</it>, <it>C. medius </it>and <it>C. crossleyi</it>. These three species were found to be genealogically exclusive in both mtDNA and nDNA loci and are morphologically distinguishable. The molecular and morphometric data indicate that <it>C. adipicaudatus </it>and <it>C. ravus </it>are synonymous with <it>C. medius </it>and <it>C. major</it>, respectively. <it>Cheirogaleus sibreei </it>falls into the <it>C. medius </it>mtDNA clade, but in morphological analyses the membership is not clearly resolved. We do not have sufficient data to assess the status of <it>C. minusculus</it>. Although additional patterns of population differentiation are evident, there are no clear subdivisions that would warrant additional specific status. We propose that ecological and more geographic data should be collected to confirm these results.</p
Domesticated Animal Biobanking : Land of Opportunity
In the past decade, biobanking has fuelled great scientific advances in the human medical sector. Well-established domesticated animal biobanks and integrated networks likewise harbour immense potential for great scientific advances with broad societal impacts, which are currently not being fully realised. Political and scientific leaders as well as journals and ethics committees should help to ensure that we are well equipped to meet future demands in livestock production, animal models, and veterinary care of companion animals.Peer reviewe
High Diversity at PRDM9 in Chimpanzees and Bonobos
BACKGROUND: The PRDM9 locus in mammals has increasingly attracted research attention due to its role in mediating chromosomal recombination and possible involvement in hybrid sterility and hence speciation processes. The aim of this study was to characterize sequence variation at the PRDM9 locus in a sample of our closest living relatives, the chimpanzees and bonobos. METHODOLOGY/PRINCIPAL FINDINGS: PRDM9 contains a highly variable and repetitive zinc finger array. We amplified this domain using long-range PCR and determined the DNA sequences using conventional Sanger sequencing. From 17 chimpanzees representing three subspecies and five bonobos we obtained a total of 12 alleles differing at the nucleotide level. Based on a data set consisting of our data and recently published Pan PRDM9 sequences, we found that at the subspecies level, diversity levels did not differ among chimpanzee subspecies or between chimpanzee subspecies and bonobos. In contrast, the sample of chimpanzees harbors significantly more diversity at PRDM9 than samples of humans. Pan PRDM9 shows signs of rapid evolution including no alleles or ZnFs in common with humans as well as signals of positive selection in the residues responsible for DNA binding. CONCLUSIONS AND SIGNIFICANCE: The high number of alleles specific to the genus Pan, signs of positive selection in the DNA binding residues, and reported lack of conservation of recombination hotspots between chimpanzees and humans suggest that PRDM9 could be active in hotspot recruitment in the genus Pan. Chimpanzees and bonobos are considered separate species and do not have overlapping ranges in the wild, making the presence of shared alleles at the amino acid level between the chimpanzee and bonobo species interesting in view of the hypothesis that PRDM9 plays a universal role in interspecific hybrid sterility
Mitochondrial phylogeography of baboons (Papio spp.) – Indication for introgressive hybridization?
<p>Abstract</p> <p>Background</p> <p>Baboons of the genus <it>Papio </it>are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. To further elucidate the phylogenetic relationships among baboons, we extended earlier studies by analysing the complete mitochondrial cytochrome <it>b </it>gene and the 'Brown region' from 67 specimens collected at 53 sites, which represent all species and which cover most of the baboons' range.</p> <p>Results</p> <p>Based on phylogenetic tree reconstructions seven well supported major haplogroups were detected, which reflect geographic populations and discordance between mitochondrial phylogeny and baboon morphology. Our divergence age estimates indicate an initial separation into southern and northern baboon clades 2.09 (1.54–2.71) million years ago (mya). We found deep divergences between haplogroups within several species (~2 mya, northern and southern yellow baboons, western and eastern olive baboons and northern and southern chacma baboons), but also recent divergence ages among species (< 0.7 mya, yellow, olive and hamadryas baboons in eastern Africa).</p> <p>Conclusion</p> <p>Our study confirms earlier findings for eastern Africa, but shows that baboon species from other parts of the continent are also mitochondrially paraphyletic. The phylogenetic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely all these biogeographic events were triggered by multiple cycles of expansion and retreat of savannah biomes during Pleistocene glacial and inter-glacial periods. During contact phases of populations reticulate events (i.e. introgressive hybridization) were highly likely, similar to ongoing hybridization, which is observed between East African baboon populations. Defining the extent of the introgressive hybridization will require further molecular studies that incorporate additional sampling sites and nuclear loci.</p
Correction to: Mitochondrial phylogeography of baboons (Papio spp.) – Indication for introgressive hybridization?
Following publication of the original article [1], we have been notified that some of the NCB accession numbers were incorrectly associated to their corresponding taxon in the Additional file 1
Status and conservation of the nordic brown bee : final report
Apis mellifera mellifera, the Nordic brown bee, was the first honeybee subspecies to colonize the Northern European region and honey has been collected and consumed in this region for about 8000 years. In 2011, the Nordic Genetic Resource Center (NordGen) established an ad hoc working group to clarify the current status of the Nordic brown bee in the Nordic and Baltic countries,to summarize the current in situ and ex situ conservation of A. m. mellifera and to provide suggestions for future research activities and initiatives. A main result of this work was that the Nordic brown bee suffers from a bad reputation within the beekeeping community. Additionally, due to their sex determination mechanism, small populations of these haplodiploidbees are at a higher risk of extinction than comparable diploid populations. Future conservation and sustainable use of A. m. mellifera calls for comprehensive phenotypicand genetic characterisation, and if possible, performance testing and selective breeding forgenetic improvement. Additionally, more effort should be put into the development and read option of management techniques suitable for A. m. mellifera, especially those concerning queen rearing. Efficient in situ conservation work should be combined with research activities,education and practical beekeeping.The in situ conservation work of A. m. mellifera in Nordic and Baltic countries has been carried out by public organizations and private people. Enhancement of conservation and expansion of the existing populations should include international cooperation, first and foremost coordinated exchange of genetic material. Financing of the conservation efforts ought to bediversified to include funding from national and/or international research grants, governmentalagencies and private businesses. However the most essential component is coordination of the national and international resources, and cooperation between actors. Based on the results of this project, we propose the establishment of a Nordic-Baltic network for in situ conservation of A.m. mellifera
Strategiplan for Genbanken for verpehøns 2018-2027
Strategiplanen oppsummerer Genbanken for verpehøns sitt samfunnsoppdrag de neste ti årene som vurderes å ha tre hovedkomponenter; 1) Sikre genetikken i den eneste norske hønserasen jærhøna og de fire verpehønslinjene som forsynte det norske hønseeggmarkedet fram til 1995. 2) Bidra til god helsestatus i norsk fjørfeproduksjon ved salg av smittefritt dyremateriale til hobbyfjørfemiljøet og mindre eggprodusenter. 3) Levere dyremateriale til forskning.publishedVersio