532 research outputs found

    Toxic effects of orally ingested oil from the Deepwater Horizon spill on laughing gulls

    Get PDF
    The explosion of the Deepwater Horizon oil rig released millions of gallons of oil into the environment, subsequently exposing wildlife, including numerous bird species. To determine the effects of MC252 oil to species relevant to the Gulf of Mexico, studies were done examining multiple exposure scenarios and doses. In this study, laughing gulls (Leucophaeus atricilla, LAGU) were offered fish injected with MC252 oil at target doses of 5 or 10 mL/kg bw per day. Dosing continued for 27 days. Of the adult, mixed-sex LAGUs used in the present study, 10 of 20 oil exposed LAGUs survived to the end of the study; a total of 10 of the oil exposed LAGUs died or were euthanized within 20 days of initiation of the study. Endpoints associated with oxidative stress, hepatic total glutathione (tGSH), oxidized glutathione (GSSG) and reduced glutathione (rGSH) significantly increased as mean dose of oil increased, while the rGSH:GSSG ratio showed a non-significant negative trend with oil dose. A significant increase in 3-methyl histidine was found in oil exposed birds when compared to controls indicative of muscle wastage and may have been associated with the gross observation of diminished structural integrity in cardiac tissue. Consistent with previous oil dosing studies in birds, significant changes in liver, spleen, and kidney weight when normalized to body weight were observed. These studies indicate that mortality in response to oil dosing is relatively common and the mortality exhibited by the gulls is consistent with previous studies examining oil toxicity. Whether survival effects in the gull study were associated with weight loss, physiologic effects of oil toxicity, or a behavioral response that led the birds to reject the dosed fish is unknown

    Experimental and modeled thermoregulatory costs of repeated sublethal oil exposure in the Double-crested Cormorant, \u3ci\u3ePhalacrocorax auritus\u3c/i\u3e

    Get PDF
    To fully understand the impact of oil exposure, it is important to understand sublethal effects like how increased thermoregulatory costs may affect survival and reproduction. However, it is difficult and time-consuming to measure these effects in wild animals. We present a novel use of a bioenergetics model, Niche Mapper™, to estimate thermoregulatory impacts of oiling, using data from captive Double-crested Cormorants (Phalacrocorax auritus) experimentally exposed to oil. Oiled cormorants had significant increases in surface body temperatures following exposure. Niche Mapper accurately predicted surface temperatures and metabolic rates for unoiled and oiled cormorants and predicted 13–18% increased daily energetic demands due to increased thermoregulatory costs of oiling, consistent with increased food consumption observed in experimentally oiled cormorants. We show that Niche Mapper can provide valuable insight into sublethal oiling effects by quantifying the extent to which thermoregulatory costs divert energy resources away from important life processes like maintenance, reproduction and migration

    Financial IncEntives for Smoking TreAtment: Protocol of the FIESTA Trial and FIESTA Oral Microbiome Substudy

    Get PDF
    BACKGROUND: Smoking is the leading preventable cause of death in the United States, but evidence-based smoking cessation therapy is underutilized. Financial incentive strategies represent an innovative approach for increasing the use of counseling and pharmacotherapy. If effective, they could supplement or supplant resource-intensive policy options, particularly in populations for whom smoking has substantial societal costs. FIESTA (Financial IncEntives for Smoking TreAtment) will randomize hospitalized smokers to receive usual smoking cessation care alone or usual smoking care augmented with financial incentives. We aim to compare the impact of these two strategies on 1) smoking abstinence, 2) use of counseling and nicotine replacement therapy, and 3) quality of life of participants. We also will evaluate the short-term and long-term return on the investment of incentives. The FIESTA Oral Microbiome Substudy will compare the oral microbiome of smokers and nonsmokers to longitudinally assess whether smoking cessation changes oral microbiome composition. METHODS: We will enroll 182 inpatient participants from the Manhattan campus of the Veterans Affairs New York Harbor Healthcare System. All participants receive enhanced usual care, including screening for tobacco use, counseling while hospitalized, access to nicotine replacement therapy, and referral to a state Quitline. Patients in the financial incentive arm receive enhanced usual care and up to $550 for participating in the New York Smoker\u27s Quitline, using nicotine replacement therapy (NRT), and achieving biochemically confirmed smoking cessation at 2 months and 6 months. In the microbiome substudy, we enroll nonsmoking control participants matched to each recruited smoker\u27s hospital ward, sex, age, diabetes status, and antibiotic use. After discharge, participants are asked to complete periodic phone interviews at 2 weeks, 2 months, 6 months, and 12 months and provide expired carbon monoxide and saliva samples at 2 months, 6 months, and 12 months for cotinine testing and oral microbiome analysis. DISCUSSION: The incentive interventions of FIESTA may benefit hospitalized smokers, an objective made all the more critical because smoking rates among hospitalized patients are higher than those in the general population. Moreover, the focus of FIESTA on evidence-based therapy and bioconfirmed smoking cessation can help guide policy efforts to reduce smoking-related healthcare costs in populations with high rates of tobacco use and costly illnesses. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02506829 . Registered on 1 July 2014

    Changes in white cell estimates and plasma chemistry measurements following oral or external dosing of double-crested cormorants, \u3ci\u3ePhalacocorax auritus\u3c/i\u3e, with artificially weathered MC252 oil

    Get PDF
    Scoping studies were designed whereby double-crested cormorants (Phalacocorax auritus) were dosed with artificially weathered Deepwater Horizon (DWH) oil either daily through oil injected feeder fish, or by application of oil directly to feathers every three days. Preening results in oil ingestion, and may be an effective means of orally dosing birds with toxicant to improve our understanding of the full range of physiological effects of oral oil ingestion on birds. Blood samples collected every 5–6 days were analyzed for a number of clinical endpoints including white blood cell (WBC) estimates and differential cell counts. Plasma biochemical evaluations were performed for changes associated with oil toxicity. Oral dosing and application of oil to feathers resulted in clinical signs and statistically significant changes in a number of biochemical endpoints consistent with petroleum exposure. In orally dosed birds there were statistically significant decreases in aspartate amino transferase (AST) and gamma glutamyl transferase (GGT) activities, calcium, chloride, cholesterol, glucose, and total protein concentrations, and increases in plasma urea, uric acid, and phosphorus concentrations. Plasma electrophoresis endpoints (pre-albumin, albumin, alpha-2 globulin, beta globulin, and gamma globulin concentrations and albumin: globulin ratios) were decreased in orally dosed birds. Birds with external oil had increases in urea, creatinine, uric acid, creatine kinase (CK), glutamate dehydrogenase (GLDH), phosphorus, calcium, chloride, potassium, albumin, alpha-1 globulin and alpha-2 globulin. Decreases were observed in AST, beta globulin and glucose. WBC also differed between treatments; however, this was in part driven by monocytosis present in the externally oiled birds prior to oil treatment

    Changes in white cell estimates and plasma chemistry measurements following oral or external dosing of double-crested cormorants, \u3ci\u3ePhalacocorax auritus\u3c/i\u3e, with artificially weathered MC252 oil

    Get PDF
    Scoping studies were designed whereby double-crested cormorants (Phalacocorax auritus) were dosed with artificially weathered Deepwater Horizon (DWH) oil either daily through oil injected feeder fish, or by application of oil directly to feathers every three days. Preening results in oil ingestion, and may be an effective means of orally dosing birds with toxicant to improve our understanding of the full range of physiological effects of oral oil ingestion on birds. Blood samples collected every 5–6 days were analyzed for a number of clinical endpoints including white blood cell (WBC) estimates and differential cell counts. Plasma biochemical evaluations were performed for changes associated with oil toxicity. Oral dosing and application of oil to feathers resulted in clinical signs and statistically significant changes in a number of biochemical endpoints consistent with petroleum exposure. In orally dosed birds there were statistically significant decreases in aspartate amino transferase (AST) and gamma glutamyl transferase (GGT) activities, calcium, chloride, cholesterol, glucose, and total protein concentrations, and increases in plasma urea, uric acid, and phosphorus concentrations. Plasma electrophoresis endpoints (pre-albumin, albumin, alpha-2 globulin, beta globulin, and gamma globulin concentrations and albumin: globulin ratios) were decreased in orally dosed birds. Birds with external oil had increases in urea, creatinine, uric acid, creatine kinase (CK), glutamate dehydrogenase (GLDH), phosphorus, calcium, chloride, potassium, albumin, alpha-1 globulin and alpha-2 globulin. Decreases were observed in AST, beta globulin and glucose. WBC also differed between treatments; however, this was in part driven by monocytosis present in the externally oiled birds prior to oil treatment

    Testing of an oral dosing technique for double-crested cormorants, \u3ci\u3ePhalacocorax auritus\u3c/i\u3e, laughing gulls, \u3ci\u3eLeucophaeus atricilla\u3c/i\u3e, homing pigeons, \u3ci\u3eColumba livia\u3c/i\u3e, and western sandpipers, \u3ci\u3eCalidris mauri\u3c/i\u3e, with artificially weather MC252 oil

    Get PDF
    Scoping studies were designed to determine if double-crested cormorants (Phalacocorax auritus), laughing gulls (Leucophaues atricilla), homing pigeons (Columba livia) and western sandpipers (Calidris mauri) that were gavaged with a mixture of artificially weathered MC252 oil and food for either a single day or 4–5 consecutive days showed signs of oil toxicity. Where volume allowed, samples were collected for hematology, plasma protein electrophoresis, clinical chemistry and electrolytes, oxidative stress and organ weigh changes. Double-crested cormorants, laughing gulls and western sandpipers all excreted oil within 30 min of dose, while pigeons regurgitated within less than one hour of dosing. There were species differences in the effectiveness of the dosing technique, with double-crested cormorants having the greatest number of responsive endpoints at the completion of the trial. Statistically significant changes in packed cell volume, white cell counts, alkaline phosphatase, alanine aminotransferase, creatine phosphokinase, gamma glutamyl transferase, uric acid, chloride, sodium, potassium, calcium, total glutathione, glutathione disulfide, reduced glutathione, spleen and liver weights were measured in double-crested cormorants. Homing pigeons had statistically significant changes in creatine phosphokinase, total glutathione, glutathione disulfide, reduced glutathione and Trolox equivalents. Laughing gulls exhibited statistically significant decreases in spleen and kidney weight, and no changes were observed in any measurement endpoints tested in western sandpipers

    Biodiversity of protists and nematodes in the wild nonhuman primate gut

    Get PDF
    Documenting the natural diversity of eukaryotic organisms in the nonhuman primate (NHP) gut is important for understanding the evolution of the mammalian gut microbiome, its role in digestion, health and disease, and the consequences of anthropogenic change on primate biology and conservation. Despite the ecological significance of gut-associated eukaryotes, little is known about the factors that influence their assembly and diversity in mammals. In this study, we used an 18S rRNA gene fragment metabarcoding approach to assess the eukaryotic assemblage of 62 individuals representing 16 NHP species. We find that cercopithecoids, and especially the cercopithecines, have substantially higher alpha diversity than other NHP groups. Gut-associated protists and nematodes are widespread among NHPs, consistent with their ancient association with NHP hosts. However, we do not find a consistent signal of phylosymbiosis or host-species specificity. Rather, gut eukaryotes are only weakly structured by primate phylogeny with minimal signal from diet, in contrast to previous reports of NHP gut bacteria. The results of this study indicate that gut-associated eukaryotes offer different information than gut-associated bacteria and add to our understanding of the structure of the gut microbiome.Fil: Mann, Allison E.. University of British Columbia; CanadáFil: Mazel, Florent. University of British Columbia; CanadáFil: Lemay, Matthew A.. University of British Columbia; CanadáFil: Morien, Evan. University of British Columbia; CanadáFil: Billy, Vincent. University of British Columbia; CanadáFil: Kowalewski, Miguel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estación Biológica de Usos Múltiples (Sede Corrientes); ArgentinaFil: Di Fiore, Anthony. University of Texas at Austin; Estados UnidosFil: Link, Andrés. Universidad de los Andes; ColombiaFil: Goldberg, Tony L.. University of Wisconsin; Estados UnidosFil: Tecot, Stacey. University of Arizona; Estados UnidosFil: Baden, Andrea L.. City University Of New York. Hunter College; Estados UnidosFil: Gomez, Andres. University of Minnesota; Estados UnidosFil: Sauther, Michelle L.. State University of Colorado at Boulder; Estados UnidosFil: Cuozzo, Frank P.. Lajuma Research Centre; SudáfricaFil: Rice, Gillian A. O.. Dartmouth College; Estados UnidosFil: Dominy, Nathaniel J.. Dartmouth College; Estados UnidosFil: Stumpf, Rebecca. University of Illinois at Urbana; Estados UnidosFil: Lewis, Rebecca J.. University of Texas at Austin; Estados UnidosFil: Swedell, Larissa. University of Cape Town; Sudáfrica. City University of New York; Estados UnidosFil: Amato, Katherine. Northwestern University; Estados UnidosFil: Wegener Parfrey, Laura. University of British Columbia; Canad

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Flea Diversity as an Element for Persistence of Plague Bacteria in an East African Plague Focus

    Get PDF
    Plague is a flea-borne rodent-associated zoonotic disease that is caused by Yersinia pestis and characterized by long quiescent periods punctuated by rapidly spreading epidemics and epizootics. How plague bacteria persist during inter-epizootic periods is poorly understood, yet is important for predicting when and where epizootics are likely to occur and for designing interventions aimed at local elimination of the pathogen. Existing hypotheses of how Y. pestis is maintained within plague foci typically center on host abundance or diversity, but little attention has been paid to the importance of flea diversity in enzootic maintenance. Our study compares host and flea abundance and diversity along an elevation gradient that spans from low elevation sites outside of a plague focus in the West Nile region of Uganda (∼725–1160 m) to higher elevation sites within the focus (∼1380–1630 m). Based on a year of sampling, we showed that host abundance and diversity, as well as total flea abundance on hosts was similar between sites inside compared with outside the plague focus. By contrast, flea diversity was significantly higher inside the focus than outside. Our study highlights the importance of considering flea diversity in models of Y. pestis persistence
    • …
    corecore