103 research outputs found

    Decoherence-free preparation of Dicke states of trapped ions by collective stimulated Raman adiabatic passage

    Full text link
    We propose a simple technique for the generation of arbitrary-sized Dicke states in a chain of trapped ions. The method uses global addressing of the entire chain by two pairs of delayed but partially overlapping laser pulses to engineer a collective adiabatic passage along a multi-ion dark state. Our technique, which is a many-particle generalization of stimulated Raman adiabatic passage (STIRAP), is decoherence-free with respect to spontaneous emission and robust against moderate fluctuations in the experimental parameters. Furthermore, because the process is very rapid, the effects of heating are almost negligible under realistic experimental conditions. We predict that the overall fidelity of synthesis of a Dicke state involving ten ions sharing two excitations should approach 98% with currently achievable experimental parameters.Comment: 14 pages, 8 figure

    Exogenous schwann cells migrate, remyelinate and promote clinical recovery in experimental auto-immune encephalomyelitis

    Get PDF
    Schwann cell (SC) transplantation is currently being discussed as a strategy that may promote functional recovery in patients with multiple sclerosis (MS) and other inflammatory demyelinating diseases of the central nervous system (CNS). However this assumes they will not only survive but also remyelinate demyelinated axons in the chronically inflamed CNS. To address this question we investigated the fate of transplanted SCs in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in the Dark Agouti rat; an animal model that reproduces the complex inflammatory demyelinating immunopathology of MS. We now report that SCs expressing green fluorescent protein (GFP-SCs) allografted after disease onset not only survive but also migrate to remyelinate lesions in the inflamed CNS. GFP-SCs were detected more frequently in the parenchyma after direct injection into the spinal cord, than via intra-thecal delivery into the cerebrospinal fluid. In both cases the transplanted cells intermingled with astrocytes in demyelinated lesions, aligned with axons and by twenty one days post transplantation had formed Pzero protein immunoreactive internodes. Strikingly, GFP-SCs transplantation was associated with marked decrease in clinical disease severity in terms of mortality; all GFP-SCs transplanted animals survived whilst 80% of controls died within 40 days of disease

    A path unenvisaged to a destination unintended: A collaborative autoethnographic account of becoming a community of practice in an HEI

    Get PDF
    In this paper we explore how a disparate group of predominately foundation phase teacher educators unintentionally, over a period of time, came together to form a strong community of practice (CoP). Voluntary involvement in a research project positioned this group of lecturers in unaccustomed roles and necessitated that they engage with each other in a variety of ways to meet project outcomes. New relationships developed as people took on different roles and new responsibilities emerged as the group faced challenges. As this was a subjective interrogation of our experiences, a research method such as autoethnography where we could focus on the experience and processes of becoming a CoP, rather than the outcomes of the research itself, seemed appropriate. We outline our understandings of a CoP and show how, through a critical self-reflective process, we were able to strengthen both our teaching and research practices in a Higher Education Institution (HEI). The strengthening occurred, in part, due to the formation and development of this CoP

    Scalable quantum search using trapped ions

    Full text link
    We propose a scalable implementation of Grover's quantum search algorithm in a trapped-ion quantum information processor. The system is initialized in an entangled Dicke state by using simple adiabatic techniques. The inversion-about-average and the oracle operators take the form of single off-resonant laser pulses, addressing, respectively, all and half of the ions in the trap. This is made possible by utilizing the physical symmetrie of the trapped-ion linear crystal. The physical realization of the algorithm represents a dramatic simplification: each logical iteration (oracle and inversion about average) requires only two physical interaction steps, in contrast to the large number of concatenated gates required by previous approaches. This does not only facilitate the implementation, but also increases the overall fidelity of the algorithm.Comment: 6 pages, 2 figure

    Robust control of quantized motional states of a chain of trapped ions by collective adiabatic passage

    Full text link
    A simple technique for robust generation of vibrational Fock states in a chain of trapped ions is proposed. The method is fast and easy to implement, since only a single chirped laser pulse, simultaneously addressing all of the ions, is required. Furthermore, because the approach uses collective adiabatic passage, significant fluctuations in the intensity or frequency of the laser pulse can be tolerated, and the technique performs well even on the border of the Lamb-Dicke regime. We also demonstrate how this technique may be extended in order to create non-classical superposition states of the ions' collective motion and Greenberger-Horne-Zeilinger states of their internal states. Because only a single laser pulse is required, heating effects arising under realistic experimental conditions are negligibly small.Comment: 9 pages, 7 figures. Discussion of performance outside Lamb-Dicke regime added. Some refs adde

    Additivity and non-additivity of multipartite entanglement measures

    Full text link
    We study the additivity property of three multipartite entanglement measures, i.e. the geometric measure of entanglement (GM), the relative entropy of entanglement and the logarithmic global robustness. First, we show the additivity of GM of multipartite states with real and non-negative entries in the computational basis. Many states of experimental and theoretical interests have this property, e.g. Bell diagonal states, maximally correlated generalized Bell diagonal states, generalized Dicke states, the Smolin state, and the generalization of D\"{u}r's multipartite bound entangled states. We also prove the additivity of other two measures for some of these examples. Second, we show the non-additivity of GM of all antisymmetric states of three or more parties, and provide a unified explanation of the non-additivity of the three measures of the antisymmetric projector states. In particular, we derive analytical formulae of the three measures of one copy and two copies of the antisymmetric projector states respectively. Third, we show, with a statistical approach, that almost all multipartite pure states with sufficiently large number of parties are nearly maximally entangled with respect to GM and relative entropy of entanglement. However, their GM is not strong additive; what's more surprising, for generic pure states with real entries in the computational basis, GM of one copy and two copies, respectively, are almost equal. Hence, more states may be suitable for universal quantum computation, if measurements can be performed on two copies of the resource states. We also show that almost all multipartite pure states cannot be produced reversibly with the combination multipartite GHZ states under asymptotic LOCC, unless relative entropy of entanglement is non-additive for generic multipartite pure states.Comment: 45 pages, 4 figures. Proposition 23 and Theorem 24 are revised by correcting a minor error from Eq. (A.2), (A.3) and (A.4) in the published version. The abstract, introduction, and summary are also revised. All other conclusions are unchange

    Microtermolides A and B from Termite-Associated Streptomyces sp. and Structural Revision of Vinylamycin

    Get PDF
    Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re-examination of the structure originally proposed for vinylamycin (3). Based on a comparison of predicted and experimental 1^1H and 13^{13}C NMR chemical shifts, we propose that vinylamycin’s structure be revised from 3 to 4

    Oestrogen receptor β ligand: a novel treatment to enhance endogenous functional remyelination

    Get PDF
    Demyelinating diseases, such as multiple sclerosis, are characterized by inflammatory demyelination and neurodegeneration of the central nervous system. Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms are central goals for future therapy of multiple sclerosis. Oestrogens and oestrogen receptor ligands are promising treatments to prevent multiple sclerosis-induced neurodegeneration. In the present study we investigated the capacity of oestrogen receptor β ligand treatment to affect callosal axon demyelination and stimulate endogenous myelination in chronic experimental autoimmune encephalomyelitis using electrophysiology, electron microscopy, immunohistochemistry and tract-tracing methods. Oestrogen receptor β ligand treatment of experimental autoimmune encephalomyelitis mice prevented both histopathological and functional abnormalities of callosal axons despite the presence of inflammation. Specifically, there were fewer demyelinated, damaged axons and more myelinated axons with intact nodes of Ranvier in oestrogen receptor β ligand-treated mice. In addition, oestrogen receptor β ligand treatment caused an increase in mature oligodendrocyte numbers, a significant increase in myelin sheath thickness and axon transport. Functional analysis of callosal axon conduction showed a significant improvement in compound action potential amplitudes, latency and in axon refractoriness. These findings show a direct neuroprotective effect of oestrogen receptor β ligand treatment on oligodendrocyte differentiation, myelination and axon conduction during experimental autoimmune encephalomyelitis

    MIBiG 2.0: a repository for biosynthetic gene clusters of known function

    Get PDF
    Fueled by the explosion of (meta)genomic data, genome mining of specialized metabolites has become a major technology for drug discovery and studying microbiome ecology. In these efforts, computational tools like antiSMASH have played a central role through the analysis of Biosynthetic Gene Clusters (BGCs). Thousands of candidate BGCs from microbial genomes have been identified and stored in public databases. Interpreting the function and novelty of these predicted BGCs requires comparison with a well-documented set of BGCs of known function. The MIBiG (Minimum Information about a Biosynthetic Gene Cluster) Data Standard and Repository was established in 2015 to enable curation and storage of known BGCs. Here, we present MIBiG 2.0, which encompasses major updates to the schema, the data, and the online repository itself. Over the past five years, 851 new BGCs have been added. Additionally, we performed extensive manual data curation of all entries to improve the annotation quality of our repository. We also redesigned the data schema to ensure the compliance of future annotations. Finally, we improved the user experience by adding new features such as query searches and a statistics page, and enabled direct link-outs to chemical structure databases. The repository is accessible online at https://mibig.secondarymetabolites.org/
    corecore