245 research outputs found

    Anti‐windup controller design for singularly perturbed systems subject to actuator saturation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166157/1/cth2bf00153.pd

    Age-related modulation of the nitrogen resorption efficiency response to growth requirements and soil nitrogen availability in a temperate pine plantation

    Get PDF
    Nitrogen (N) resorption is a key strategy for conserving N in forests, and is often affected by soil nutrient condition and N sink strength within the plant. However, our understanding of the age-related pattern of N resorption and how increasing N deposition will affect this pattern is limited. Here, we investigated N resorption along a chronosequence of stands ranging in age from 2 to 100 years old, and conducted a 4-year exogenous N input experiment in stands at age class 11, 20, and 45 in a Larix Principis-rupprechtii plantation in north China. We found a logarithmic increase in leaf N resorption efficiency (NRE) and green leaf N concentration, and a logarithmic decrease in senesced-leaf N concentration along the stand-age chronosequence. Leaf NRE was negatively correlated with plant-available N concentration. Stand-level N resorption was positively correlated with the annual N requirement for tree growth. N resorption contributed to 45, 62, and 68% of the annual N supply in the 11-, 20-, and 45-year-old stands, respectively. Our exogenous N input experiment showed that leaf NRE in the 11- and 20-year-old stands decreased 17 and 12% following a 50-kg N ha¯¹ y¯¹ input. However, leaf NRE was not affected in the 45-year-old stand. The increases in leaf NRE and the contribution of N resorption to annual N supply along stand ages suggested that, with stand development, tree growth depends more on N resorption to supply its N need. Furthermore, the leaf NRE of mature stand was not decreased under exogenous N input, suggesting that mature stands can be stronger sinks for N deposition than young stands due to their higher capacity to retain the deposited N within plants via internal cycle. Ignoring age-related N use strategies can lead to a bias in N cycle models when evaluating forest net primary production under increasing global N deposition

    Soil moisture retrieval over agricultural fields from L-band multi-incidence and multitemporal PolSAR observations using polarimetric decomposition techniques

    Get PDF
    Surface soil moisture (SM) retrieval over agricultural areas from polarimetric synthetic aperture radar (PolSAR) has long been restricted by vegetation attenuation, simplified polarimetric scattering modelling, and limited SAR measurements. This study proposes a modified polarimetric decomposition framework to retrieve SM from multi-incidence and multitemporal PolSAR observations. The framework is constructed by combining the X-Bragg model, the extended double Fresnel scattering model and the generalised volume scattering model (GVSM). Compared with traditional decomposition models, the proposed framework considers the depolarisation of dihedral scattering and the diverse vegetation contribution. Under the assumption that SM is invariant for the PolSAR observations at two different incidence angles and that vegetation scattering does not change between two consecutive measurements, analytical parameter solutions, including the dielectric constant of soil and crop stem, can be obtained by solving multivariable nonlinear equations. The proposed framework is applied to the time series of L-band uninhabited aerial vehicle synthetic aperture radar data acquired during the Soil Moisture Active Passive Validation Experiment in 2012. In this study, we assess retrieval performance by comparing the inversion results with in-situ measurements over bean, canola, corn, soybean, wheat and winter wheat areas and comparing the different performance of SM retrieval between the GVSM and Yamaguchi volume scattering models. Given that SM estimation is inherently influenced by crop phenology and empirical parameters which are introduced in the scattering models, we also investigate the influence of surface depolarisation angle and co-pol phase difference on SM estimation. Results show that the proposed retrieval framework provides an inversion accuracy of RMSE<6.0% and a correlation of R≥0.6 with an inversion rate larger than 90%. Over wheat and winter wheat fields, a correlation of 0.8 between SM estimates and measurements is observed when the surface scattering is dominant. Specifically, stem permittivity, which is retrieved synchronously with SM also shows a linear relationship with crop biomass and plant water content over bean, corn, soybean and wheat fields. We also find that a priori knowledge of surface depolarisation angle, co-pol phase difference and adaptive volume scattering could help to improve the performance of the proposed SM retrieval framework. However, the GVSM model is still not fully adaptive because the co-pol power ratio of volume scattering is potentially influenced by ground scattering.This work was supported by the National Natural Science Foundation of China [grant numbers 61971318, 41771377, 41901286, 42071295, 41901284, U2033216]; the China Postdoctoral Science Foundation [grant number 2018M642914]. This work was supported in part by the Spanish Ministry of Science and Innovation, the State Agency of Research (AEI), and the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P

    Optimization of brewing conditions in epigallocatechin-3-gallate (EGCG) extraction from Jinxuan summer green tea by response surface methodology

    Get PDF
    The extraction conditions of epigallocatechin-3-gallate (EGCG) from Jinxuan summer green tea and antitumor activity against human gastric cancer SGC-7901 cells of the green tea extracts were investigated. On the basis of a single factor experiment, Box-Behnken design and response surface methodology were employed to optimize the hot water extraction conditions. The optimal extraction conditions for EGCG were determined as: extraction temperature of 85 °C, extraction time of 34 min, water-tea ratio of 41 mL/g, a solution of pH 6, and extraction twice. Under these conditions, the experimental extraction yield value of EGCG was 33.82 mg/g, which was not significantly different in comparison to predicted values. The results indicated that the regression models were suitable for the EGCG extraction from Jinxuan summer green tea. The summer green tea extract prepared under the optimal conditions had a higher antitumor activity against human gastric cancer SGC-7901 cells than the green tea extract made with traditional tea brewing method

    Increased Expression of Ganglioside GM1 in Peripheral CD4+ T Cells Correlates Soluble Form of CD30 in Systemic Lupus Erythematosus Patients

    Get PDF
    Gangliosides GM1 is a good marker of membrane microdomains (lipid rafts) with important function in cellular activation processes. In this study we found that GM1 expression on CD4+ T cells and memory T cells (CD45RO/CD4) were dramatic increased after stimulation with phytohaemagglutinin in vitro. Next, we examined the GM1 expression on peripheral blood CD4+ T cells and CD8+ T cells from 44 patients with SLE and 28 healthy controls by flow cytometry. GM1 expression was further analyzed with serum soluble CD30 (sCD30), IL-10, TNF-alpha and clinical parameters. The mean fluorescence intensity of GM1 on CD4+ T cells from patients with SLE was significantly higher than those from healthy controls, but not on CD8+ T cells. Increased expression of GM1 was more marked on CD4+/CD45RO+ memory T cells from active SLE patients. Patients with SLE showed significantly elevated serum sCD30 and IL-10, but not TNF-alpha levels. In addition, we found that enhanced GM1 expression on CD4+ T cells from patients with SLE positively correlated with high serum levels of sCD30 and IgG as well as disease activity (SLEDAI scores). Our data suggested the potential role of aberrant lipid raft/GM1 on CD4+ T cells and sCD30 in the pathogenesis of SLE

    Corticosteroids for the prevention of bronchopulmonary dysplasia in preterm infants: a network meta-analysis

    Get PDF
    Objective: To determine the comparative efficacy and safety of corticosteroids in the prevention of bronchopulmonary dysplasia (BPD) in preterm infants.  Study design: We systematically searched PubMed, EMBASE and the Cochrane Library. Two reviewers independently selected randomised controlled trials (RCTs) of postnatal corticosteroids in preterm infants. A Bayesian network meta-analysis and subgroup analyses were performed.  Results: We included 47 RCTs with 6747 participants. The use of dexamethasone at either high dose or low dose decreased the risk of BPD (OR 0.29, 95% credible interval (CrI) 0.14 to 0.52; OR 0.58, 95% CrI 0.39 to 0.76, respectively). High-dose dexamethasone was more effective than hydrocortisone, beclomethasone and low-dose dexamethasone. Early and long-term dexamethasone at either high dose or low dose decreased the risk of BPD (OR 0.11, 95% CrI 0.02 to 0.4; OR 0.37, 95% CrI 0.16 to 0.67, respectively). There were no statistically significant differences in the risk of cerebral palsy (CP) between different corticosteroids. However, high-dose and long-term dexamethasone ranked lower than placebo and other regimens in terms of CP. Subgroup analyses indicated budesonide was associated with a decreased risk of BPD in extremely preterm and extremely low birthweight infants (OR 0.60, 95% CrI 0.36 to 0.93).  Conclusions: Dexamethasone can reduce the risk of BPD in preterm infants. Of the different dexamethasone regimens, aggressive initiation seems beneficial, while a combination of high-dose and long-term use should be avoided because of the possible adverse neurodevelopmental outcome. Dexamethasone and inhaled corticosteroids need to be further evaluated in large-scale RCTs with long-term follow-ups

    The role of high mobility group box chromosomal protein 1 in rheumatoid arthritis

    Get PDF
    Abstract High mobility group box chromosomal protein 1 (HMGB1) is a ubiquitous highly conserved single polypeptide in all mammal eukaryotic cells. HMGB1 exists mainly within the nucleus and acts as a DNA chaperone. When passively released from necrotic cells or actively secreted into the extracellular milieu in response to appropriate signal stimulation, HMGB1 binds to related cell signal transduction receptors, such as RAGE, TLR2, TLR4 and TLR9, and becomes a proinflammatory cytokine that participates in the development and progression of many diseases, such as arthritis, acute lung injury, graft rejection immune response, ischaemia reperfusion injury and autoimmune liver damage. Only a small amount of HMGB1 release occurs during apoptosis, which undergoes oxidative modification on Cys106 and delivers tolerogenic signals to suppress immune activity. This review focuses on the important role of HMGB1 in the pathogenesis of RA, mainly manifested as the aberrant expression of HMGB1 in the serum, SF and synovial tissues; overexpression of signal transduction receptors; abnormal regulation of osteoclastogenesis and bone remodelling leading to the destruction of cartilage and bones. Intervention with HMGB1 may ameliorate the pathogenic conditions and attenuate disease progression of RA. Therefore administration of an HMGB1 inhibitor may represent a promising clinical approach for the treatment of RA

    Construction of a eukaryotic expression vector for pEGFP-FST and its biological activity in duck myoblasts

    Get PDF
    Background: Follistatin (FST), a secreted glycoprotein, is intrinsically linked to muscle hypertrophy. To explore the function of duck FST in myoblast proliferation and differentiation, the pEGFP-FST eukaryotic expression vector was constructed and identified. The biological activities of this vector were analyzed by transfecting pEGFP-FST into cultured duck myoblasts using Lipofectamine\u2122 2000 and subsequently determining the mRNA expression profiles of FST and myostatin (MSTN). Results: The duck pEGFP-FST vector was successfully constructed and was confirmed to have high liposome-mediated transfection efficiency in duck myoblasts. Additionally, myoblasts transfected with pEGFP-FST had a higher biological activity. Significantly, the overexpression of FST in these cells significantly inhibited the mRNA expression of MSTN (a target gene that is negatively regulated by FST). Conclusions: The duck pEGFP-FST vector has been constructed successfully and exhibits biological activity by promoting myoblast proliferation and differentiation in vitro

    Application and development of Deuterium Metabolic Imaging in tumor glucose metabolism: visualization of different metabolic pathways

    Get PDF
    Cancer metabolism has emerged as a pivotal area of research recently. The ability to visualize and comprehend the metabolic processes of cancer holds immense clinical value, particularly in the diagnosis of malignant tumors and the assessment of treatment responses. Deuterium Metabolic Imaging (DMI), as a robust, simple, and versatile MR spectroscopic imaging tool, demonstrates promise in tumor diagnosis and treatment efficacy assessment. This review explored the latest developments and applications of DMI in oncology across various tumor metabolic axes, with a specific emphasis on its potential for clinical translation. DMI offers invaluable insights into tumor biology, treatment responses, and prognostic outcomes. Notably, DMI can identify early responses to immunotherapy, a prominent area of current research interest. In conclusion, DMI harbors the potential to evolve into a convenient and efficient imaging technique in clinical practice, thereby advancing precision medicine and improving the diagnosis and evaluation of cancer treatments
    corecore