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Cancer metabolism has emerged as a pivotal area of research recently. The

ability to visualize and comprehend the metabolic processes of cancer holds

immense clinical value, particularly in the diagnosis of malignant tumors and the

assessment of treatment responses. Deuterium Metabolic Imaging (DMI), as a

robust, simple, and versatile MR spectroscopic imaging tool, demonstrates

promise in tumor diagnosis and treatment efficacy assessment. This review

explored the latest developments and applications of DMI in oncology across

various tumormetabolic axes, with a specific emphasis on its potential for clinical

translation. DMI offers invaluable insights into tumor biology, treatment

responses, and prognostic outcomes. Notably, DMI can identify early

responses to immunotherapy, a prominent area of current research interest. In

conclusion, DMI harbors the potential to evolve into a convenient and efficient

imaging technique in clinical practice, thereby advancing precision medicine and

improving the diagnosis and evaluation of cancer treatments.

KEYWORDS

cancer metabolism, magnetic resonance imaging, molecular imaging, deuterium
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1 Introduction

Metabolism has long been a topic of interest in cancer research, due to the distinct

metabolic traits that tumor cells exhibit compared to their normal counterpart. These

metabolic adaptations, encompassing various intracellular and extracellular alterations,

play a pivotal role not only in the growth and proliferation of malignant cells but also in

shaping gene expression, cellular differentiation, and the tumor microenvironment (1–4).
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Among these alterations, glucose metabolic reprogramming holds

particular significance in tumor cells, leading to increased glucose

uptake and consumption (5). This metabolic reprogramming opens

up new avenues for malignancy treatment, including the use

of glycolytic inhibitors such as 2-deoxy-D-glucose and 3-

bromopyruvate (6–8). Consequently, understanding and

visualizing aberrant tumor metabolism offers immense potential

for non-invasive malignancy diagnosis and treatment assessment.

The advancement of precision medicine in modern oncology

has driven the development of biomedical imaging techniques and

functional metabolic therapies, enabling comprehensive

investigations of tumor biology at the cellular and molecular

levels (9–11). Recently, there has been an increasing emphasis on

imaging tumor tissue metabolism, leading to dedicated studies in

this field (4, 12). Among the various metabolic imaging techniques,

such as Positron Emission Computed Tomography (PET), dynamic

hyperpolarized 13C Magnetic Resonance Spectroscopy Imaging

(MRSI), and Deuterium Metabolic Imaging (DMI), DMI stands

out as a versatile and robust approach that provides more flexible

dosing and scanning time by using 2H-enriched metabolites with

high homology to endogenous molecules (13). Its simplicity,

including the use of MR (magnetic resonance) methods, obviates

the need for water and lipid signal suppression, making it inherently

robust for metabolic imaging (14). Furthermore, the low

gyromagnetic ratio of the 2H isotope coupled with the sparse MR

spectrum of 2H-containing metabolic molecules renders DMI

minimally affected by magnetic field inhomogeneity (14).

Additionally, favorable T1 and T2 relaxation times of DMI

further facilitate high sensitivity through fast scanning with

excellent spectral resolution (15). The availability of a wide range

of non-radioactive and biocompatible 2H-enriched substrates

targeting various metabolic pathways has further propelled the

development of DMI, making it a promising tool in oncology.

Hence, this review focuses on recent advancements and applications

of DMI in oncology, highlighting its potential for clinical

translation, and discussing its future development trends.
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2 Existing imaging technologies
and comparison

Currently, clinical diagnosis and treatment monitoring of cancer

heavily rely on PET imaging, primarily using 2-18F-fluoro-2-deoxy-

D-glucose (18FDG) as the imaging agent. PET exploits the increased

glycolysis in tumor tissue, allowing for the detection of tumor uptake

and phosphorylation of FDG (16–19). It plays a crucial role in tumor

diagnosis, staging, and assessing treatment response, while also aiding

in identifying and monitoring immune-related toxicities (17, 19).

However, PET has several limitations: First, PET provides high-

resolution maps of glucose uptake but is limited in detecting

downstream metabolites; additionally, it may encounter challenges

in identifying tumors in organs with high baseline glucose uptake,

such as the brain, resulting in decreased contrast in brain tumor

imaging (20, 21). Second, 18FDG is a radioactive tracer that limits

longitudinal measurements and may prohibit examination in certain

patient populations due to safety concerns.

Hyperpolarized 13C MRSI is an emerging magnetic resonance

spectroscopy imaging technique that significantly enhances the

magnetic resonance signal by utilizing dynamic nuclear

polarization (DNP) (22). This technology holds promise for early-

stage cancer diagnosis and treatment response monitoring,

particularly in prostate cancer, breast cancer, renal clear cell

tumors, and central nervous system tumors (23–27). The primary

advantage of hyperpolarized 13C MRSI is its ability to detect

downstream metabolites of glucose. However, its clinical

implementation faces challenges due to additional hardware

requirements, lengthy operating time and associated high costs (28).

DMI employs magnetic resonance to detect 2H-labeled

molecular probes, and related metabolites as illustrated in

Figure 1. By analyzing the downstream metabolites of these

probes, DMI can visualize various metabolic pathways and

provide molecular insights into tumor tissue metabolism without

radiation exposure (30). Incorporating spatial localization coding

allows for the analysis and comparison of the concentration of
FIGURE 1

Workflow of a Deuterium Metabolic Imaging (DMI) study: Following the administration of deuterium-labeled glucose, via tail vein injection in mice and oral
ingestion in humans, deuterium metabolism magnetic resonance imaging (DMSI) is employed for signal detection. The obtained data is subsequently
subjected to comprehensive processing and analysis as shown in (A–F) to facilitate interpretation. Deuterium NMR spectra acquired without localization
from (A) rat brain in vivo at 11.7 T before infusion of any 2H-labeled substrate, (B) rat brain after infusion of 2H-glucose in vivo, (C) rat brain after infusion of
2H-glucose postmortem, and (D) rat brain after infusion of 2H-acetate in vivo. (E) 2H NMR spectrum acquired from human brain at 4 T, 60 min after oral
administration of 2H-glucose. (F) 2H NMR spectra from rat (top, black) and human (bottom, gray) liver after intravenous and oral administration of 2H-
labeled glucose, respectively. (A-F) are cited from De Feyter et al. (29) (non-commercial 4.0 international license, CC BY-NC 4.0).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1285209
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wan et al. 10.3389/fonc.2023.1285209
related 2H-labeled metabolites in different tissues (30). Due to the

lower chemical shift range, J-coupling constants, and coupling

effects of deuterium compared to hydrogen, the complexity of

deuterium spectrum is simplified, which facilitates the

interpretation and analysis of DMI and enables researchers to

focus on specific deuterium labeled metabolites and their

metabolic kinetics (14, 29). DMI enables dynamic tracking of the

entire process of cell metabolism within tumor cells, including

glucose transport, pentose 6-phosphate pathway conversion (PPP),

glycolysis, and the Krebs cycle (31). These capabilities hold

significant potential for guiding precision treatments (29).

The critical advantage of DMI lies in its ability to utilize

exogenous 2H labeling to capture multiple metabolic steps

involved in glucose metabolism, as depicted in Figure 2.

Furthermore, DMI facilitates the quantitative determination of

biochemical kinetic constants, enhancing its utility in metabolic

research. In contrast to 1H-MRSI, DMI does not necessitate the use

of additional radio frequency (RF) pulses for the suppression of

protonated water, due to the low abundance of natural deuterated

water, leading to a low specific absorption rate (SAR) of RF power

(14, 29). This will mitigate the rise in temperature during the patient

examination process, thereby simplifying and enhancing the safety

of DMI’s clinical application (35). Unlike PET, which faces

challenges in brain tumor imaging (36), DMI has emerged as a

valuable alternative (37). It overcomes the limitations posed by

high glucose uptake in both normal brain tissue and malignant
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tumors, enabling precise imaging of malignancies (38). Although

the combination of PET and CT provides a higher spatial resolution

advantage, DMI offers a simpler and more convenient imaging

method without any radiation exposure, making it safer for

longitudinal studies (39). As a complementary technique to

hyperpolarized 13C MRSI, DMI allows for the long-term

monitoring of metabolic processes without requiring significant

modifications to existing clinical magnetic resonance instruments.

Additionally, the naturally low abundance of 2H (40) eliminates the

need to suppress 2H signals from water and fat during MRSI (30).
3 Application of DMI in
tumor metabolism

In this review, we highlight the potential of DMI in studying

tumor metabolism, with a specific focus on glucose metabolism

pathways. To provide a comprehensive perspective, Table 1 provides

an overview of various studies that have explored the application of

DMI in the realms of metabolic imaging and treatment evaluation.
3.1 Tumor glycolysis metabolism

Metabolic reprogramming is a hallmark of almost every tumor

cell, leading to a preference for utilizing glucose for glycolysis, even
FIGURE 2

Metabolic processes within tumor cells: Glucose ingress into tumor cells via the glucose transporter (GLUT) initiates two vital metabolic pathways,
glycolysis and the tricarboxylic acid (TCA) cycle. Within tumor cells, glycolysis predominates as the primary energy source, resulting in the substantial
production of lactic acid, which is extruded by the Monocarboxylic Acid Transporter (MCT). Deuterium Metabolic Imaging (DMI) is adept at
monitoring the conversion of 2H-pyruvate to 2H-lactate (highlighted by the red arrow) during glycolysis, thereby offering insights into the metabolic
flux of glycolysis in tumors (32). Similarly, DMI facilitates the evaluation of tumor cell death by tracking the metabolism of 2H-fumaric acid to 2H-
malic acid (indicated by the blue arrow) during the TCA cycling (33, 34).
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in the presence of oxygen (47, 48). The advent of DMI technology

now enables the visualization and quantitative analysis of this

metabolic reprogramming in tumors, as shown in Figure 2.

3.1.1 Glucose-lactic acid metabolism axis
Several studies have demonstrated the potential of DMI in

investigating the glucose-lactate metabolism pathway in tumors.

De Feyter et al. successfully identified metabolic differences between

normal brain tissue and tumor tissue using DMI in a rat glioma

model, showing a higher level of the lactate/glutamine ratio in

tumors (29). They also observed similar metabolic patterns and

image contrast in two patients with a high-grade brain tumor after

oral intake of 2H-labeled glucose. L. Tan et al. utilized DMI to

observe metabolic changes in acute myeloid leukemia cells
Frontiers in Oncology 04
following cisplatin treatment, revealing higher lactate levels in

AML cells compared to normal cells (41). The both studies jointly

highlight the potential of DMI in tumor diagnosis from both in vivo

and in vitro perspectives. Kreis et al. implemented a dynamic DMI

approach to quantify glycolytic metabolic flux in a lymphoma mice

model, revealing heterogeneity within tumors (32). Markovic et al.

analyzed glucose metabolism in an orthotopic pancreatic cancer

mouse model, unveiling differences in lactate clearance kinetics

between two distinct pancreatic cancer subtypess (39). Simões et al.

developed a dynamic glucoseenhanced deuterium spectroscopy

(DGE2H-MRS) to evaluate the glucose metabolic turnover rate in

mice with two different pathological types (GL261 and CT2A cells)

of glioma by differential glycolysis and mitochondrial oxidation

(43). n addition to providing insights into glycolysis metabolism,
TABLE 1 A summary of the research on deuterium metabolic spectroscopy and imaging.

research

deuterium
probe

species
field
strength/
T

Tumor type
Research content and conclusion

Glucose-lactic acid metabolism axis

De Feyter et al. (29)
2H-glucose rat/human

11.7T(rat)/
4.7T(human)

Glioma
They successfully revealed a significant metabolic difference
between the normal brain and tumor tissue through DMI.

Kreis et al. (32)

2H-glucose mouse 9.4T lymphadenoma
They proposed a dynamic DMI strategy toward a
quantitative measurement of glycolytic metabolic flux in a
lymphoma mice model using chemical kinetic analysis.

Tan et al. (41)

2H-glucose acute
myeloid
leukemia
(AML)
cells

7T

Acute myeloid
leukemia

They explored that DMI can be served as a non-invasive
monitoring tool for early tumor treatment effects.

Markovic et al. (39)

2H-glucose mouse 15.2T pancreatic ductal
adenocarcinoma
(PDAC)

They proposed a kinetic model to describe the exchanges
between kidney and tumor glucose, water, and lactate.

Veltien et al. (42)

2H-choline,
2H-glucose

mouse 11.7T renal carcinoma
They revealed that DMI can simultaneously obtain two main
tumor metabolic information (Glucose uptake and glycolytic
metabolism and choline uptake).

SimõCheck that all equations
and special characters are
displayed correctly. es et al. (43)

2H-glucose mouse 9.4T Glioblastoma
multiforme
(GBM)

They developed a dynamic glucose-enhanced deuterium
spectroscopy (DGE2H-MRS).

Fumaric-malic acid metabolism axis

Hesse et al. (33) 2H-fumarate mouse
7T

murine
lymphoma
(EL4)

They demonstrate that the 2Hmalate signal generated by
2H-fumarate monitored through DMI can be used to detect
tumor cell death.

Hesse et al. (34) 2H-fumarate mouse
7T

murine
lymphoma
(EL4)

They showed that cell death can be detected with similar
sensitivity following oral administration of the 2H-labeled
fumarate.

tumor telomere-related fields

Batsios et al. (44) 2H-pyruvate mouse
14.1T glioblastoma They found that TERT

expression could be visualized in vivo using DMI.

Taglang et al. (45) 2H-glucose mouse
14.1T Astrocytoma They found that DMI can be used as a new imaging method

for the alternative lengthening of telomeres (ALT) pathway.

Others

Hartmann et al. (46)

deuterated 3-O-
Methylglucose
(OMG) rat

7T breast cancer They investigated the feasibility of using deuterated 3-O-
methylglucose (OMG) to perform DMI on tumor-bearing
mice in 2021 as a complementary to PET.
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DMI also offers crucial information regarding another key aspect of

tumor metabolism: choline uptake. Veltien et al. utilized DMI to

monitor and image 2H-choline and 2H-glucose signals in

subcutaneous kidney tumors in mice (42).

Tumor cells majorly obtain energy from anaerobic glycolysis

resulting in lactate accumulation within the tumor tissue (12, 49).

Elevated lactate levels in tumors are associated with cancer

metastasis, progression, recurrence, and poor prognosis (49).

Tumor cells not only use lactate as an energy source, but also

shuttle it to adjacent cancer cells, stroma, and vascular endothelial

cells, inducing metabolic reprogramming (50). Notably, glycolytic

enzymes such as hexokinase2 (HK2)2 and pyruvate kinase (PK)M2

have been extensively studied for their correlation with cancer cell

motility and invasive capacity (51–55). The integration of

macroscopic imaging of tumor metabolism using DMI, in

combination with Western blot analysis and other techniques,

holds the potential to explore metabolic markers related to tumor

metastasis and provide valuable assistance in tumor staging

and prognosis.

3.1.2 Fumaric-malic acid metabolism axis
In the tricarboxylic acid cycle of aerobic metabolism, fumarate

is converted to malate catalyzed by the enzyme fumarase (or

fumarate hydratase, EC 4.2.1.2) (56). Monitoring the malate

signal generated from fumarate metabolism can provide insights

into the early response of tumors to treatment and other

pathological conditions associated with cell death, such as toxic

injury or ischemia (57–61). While hyperpolarized 13C MRSI has

demonstrated an increase in malate signal in treated tumor tissues

due to tumor cell necrosis, researchers are exploring the potential of

DMI as a cost-effective and more straightforward imaging tool for

monitoring the fumarate-malate metabolism process in tumors

(Figure 2) (56).

Hesse et al. (33) utilized DMI in a 7-Tesla MR scanner to

monitor the metabolized 2H-malate signal in lymphoma cells and

tumor-bearing mice before and after treatment with etoposide.

Their findings suggest that DMI could serve as a noninvasive

imaging tool to monitor early tumor response to therapy.

Building on this research, they used DMI to track the malate

signal in tumor tissue before and after treating tumor-bearing

mice with etoposide and compared the effects of oral

administration and intravenous administration of deuterated

fumaric acid (34). This study discovered that 2H-fumarate, a cell

death marker, could be detected with similar sensitivity through

different administration methods. These findings provide a

promising prospect for the clinical use of DMI in monitoring the

early response of tumor patients to oral anti-tumor drugs.

These studies underscore the potential of DMI as a valuable tool

for detecting tumor cell death by monitoring the conversion of

fumarate to malate. DMI offers advantages over 13C hyperpolarized

MRSI in terms of cost-effectiveness and ease of implementation.

Consequently, DMI shows promise as a non-invasive imaging

technique for monitoring cell death and early response to

tumor treatment.
Frontiers in Oncology 05
3.2 Application of DMI in tumor
telomere-related fields

In addition to the Warburg effect, continuous cell division is a

hallmark of advanced malignancy, often linked with the

reactivation of telomere reverse transcriptase (TERT) (62). A

recent study by Batsios et al. (44) has demonstrated that DMI can

evaluate TERT expression in vivo, revealing a TERT-FOXO1 axis in

cancer metabolic reprogramming. This connection sheds light on

the role of TERT in the glycolytic pathway, particularly in the

conversion of pyruvate to lactate (Figure 3B). The noninvasive

detection of metabolic changes related to TERT expression through

DMI holds significant promise. Further studies should aim to

validate these findings in clinical settings and explore the clinical

utility of DMI, providing new insights into the intricate relationship

between TERT expression and cancer metabolism.

Diagnosing and evaluating the treatment response of

astrocytoma can be challenging, especially in distinguishing

tumor progression from pseudoprogression (63). Taglang et al.

(45) have demonstrated that DMI could serve as a novel imaging

technique for studying the alternative lengthening telomeres (ALT)

pathway in astrocytoma. This telomerase-independent telomere

maintenance mechanism involves metabolic reprogramming that

increases glycolytic flux in astrocytoma (Figure 3A). The study

utilized DMI to visualize glycolysis flux in astrocytoma mouse

models, confirming the relationship between the ALT pathway

and glycolytic flux through genetic and pharmacological

approaches. These findings highlight the value of DMI in

visualizing ALT-related metabolic reprogramming in astrocytoma

and its potential for diagnosing and evaluating treatment response.

Additionally, DMI exhibits the ability to detect early changes in

tumor lactate signal, making it effective in identifying

pseudo-progression.

These studies provided valuable insights into the telomere-

related aspects of tumors and proposed a promising approach for

metabolic imaging in cancer patients applicable in clinical practice.

A biological link between tumor telomeres and glycolytic

metabolism is established through the TERT or ALT pathway.

Gene set enrichment analysis has further revealed enhanced

glycolysis in adrenocortical carcinoma with high TERT levels

(64). Overall, telomere maintenance is a hallmark of cancer and is

often achieved through the reactivation of TERT or ALT pathways,

which are associated with the glycolysis (45, 64–66). DMI offers a

non-invasive and clinically translatable biomarker for evaluating

the telomere-related expression in tumors, providing indirect but

valuable imaging insights into the TERT and ALT pathways.
3.3 Other applications: new tracer
in DMI-OMG

Deuterated 3-O-methylglucose (OMG) has emerged as a

promising tracer in DMI, offering an alternative to PET for

quantifying glucose uptake (46). Unlike 18FDG used in PET,
frontiersin.org
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OMG is a non-metabolizable glucose analog that is transported

similarly to D-glucose. Hartmann et al. (46) conducted a study to

explore the potential of OMG-DMI as a non-ionizing radiation

alternative for tumor imaging. Their results demonstrated the

feasibility of using OMG-DMI as a viable method for specific

detection and quantification of glucose uptake in tumors.
4 Future development in DMI for
tumor immunotherapy

Recent advancements in tumor immunotherapy have yielded

significant clinical breakthroughs for numerous tumor patients (67–

69). Infiltrating immune cells (e.g., T cells, B cells, neutrophils, etc.)

undergo metabolic changes that can impact tumor progression and

antitumor function. These metabolic alterations often involve

increased glycolysis and lactate accumulation (70). However, the

tumor microenvironment poses challenges to effective anti-tumor

immunity due to hypoxia, acidity, and nutrient depletion (71).

Studies have highlighted that highly expressed glycolytic genes can

hinder the effectiveness of immunotherapy, while targeted

glycolytic drugs (e.g., dimethyl fumarate, 2-deoxyglucose,

diclofenac, etc.) have been found to enhance immunotherapy

efficacy by promoting IFN-g production in immune cells (72–74).

Strategies aimed at inhibiting tumor cell glycolysis are actively

under investigation to improve immunosurveillance and control
Frontiers in Oncology 06
tumor growth. Real-time visualization of tumor glycolysis can play

a crucial role in treatment planning and monitoring the response to

immunotherapy, thus enhancing its safety and effectiveness. DMI

has been demonstrated as a simple and efficient imaging tool

capable of real-time monitoring 2H-glucose and 2H-lactate signals

to visualize the tumor glycolytic metabolism De Feyter et al. (29);

Tan et al. (41). Consequently, DMI is expected to emerge as a non-

invasive and promising imaging tool in tumor immunotherapy and

targeted therapy.
5 Discussion

This review provides an overview of DMI’s applications in

various tumor metabolic processes. The primary focus of most

studies has been on the metabolic reprogramming of tumors,

especially the Warburg effect. These investigations have

successfully harnessed DMI for non-invasive imaging of tumor

glycolysis metabolism. DMI has also shown potential in detecting

the malate signal produced by fumarate metabolism within tumor

tissue, enabling the non-invasive evaluation of early tumor response

to treatment and cell death. Furthermore, the reactivation of the

TERT andor ALT pathways, critical for maintaining tumor

telomeres, has been biologically linked to glycolysis. Researchers

have utilized DMI for TERT and ALT pathway imaging, allowing

non-invasive evaluation of telomere-related expression in tumors.
BA

FIGURE 3

Schematic summary of the study of Batsios et al. Batsios et al. (44) and Taglang et al. Taglang et al. (45) (A) The alternative lengthening telomeres
(ALT) pathway elevates glycolytic flux via enzyme phosphofructokinase-1(PFK1). This metabolic reprogramming and response to PARPi (polymerase
inhibitors) that cause telomeric fusion in ALT cells can be non-invasively monitored via quantification of lactate production from 2H-glucose. (B)
Schematic representation elucidating the intricate relationship among telomerase reverse transcriptase (TERT), FOXO1 (a member of the Fox family
of transcription factors), nicotinamide phosphoribosyl transferase (NAMPT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), nicotinamide
(NAM), nicotinamide mononucleotide (NMN), nicotinamide adenine dinucleotide (NADH), and pyruvate flux to lactate in TERT-positive (TERT+)
cancer cells.
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As a result, DMI holds the potential to become a convenient and

efficient imaging tool in clinical practice, providing non-invasive

evaluation of tumor metabolism.

Recent studies have demonstrated that T cell effector functions

and augments immunotherapy were correlated with restricted

glycolysis (72–74). This makes DMI a valuable tool for evaluating

treatment response after immunotherapy, as it can image and

monitor tumor glycolytic metabolism. DMI can aid in

pinpointing optimal time windows for immunotherapy and

improving the precision of clinical interventions. Additionally,

lactate accumulation in tumors is associated with cancer

metastasis and prognosis (49, 75). DMI enables non-invasive

visualization of the entire metabolic process within tumors,

providing valuable insights into tumor prognosis and staging.

Recent research has also unveiled a mechanistic connection

between tumor glycolysis metabolism and telomere elongation,

which can be evaluated using DMI (44, 45). As a macroscopic

imaging tool, DMI complements and validates microscopic

perspectives, such as proteins, DNA, RNA, etc., offering valuable

information on metabolic changes.

Furthermore, DMI can provide complementary perspectives

and evidence when used in conjunction with other techniques, such

as 13C MRSI (57–61). Labeled malate production in 13C MRSI has

demonstrated the in vivo imaging of cell death (57–61). As our

understanding of tumor and immune cell metabolism advances in

cancer progression and immunotherapy, DMI exhibits great

potential in cancer diagnosis and treatment evaluation (76), DMI

exhibited the great application prospects in cancer diagnosis and

treatment evaluation. While DMI is rapidly advancing in cancer

research, there are still several challenges to be addressed for its

clinical translation. These challenges encompass the development of

reliable methods for quantifying deuterium substance injection,

ensuring the safety of DMI probes, and advancing the hardware

development of cl inical systems. A standardized and

comprehensive set of indicators and protocols for DMI can be

adopted from relevant diagnostic and evaluation approaches of

PET. This standardization would be crucial for advancing further

clinical research in cancer using DMI.
6 Conclusion

In conclusion, DMI emerges as a powerful and promising tool for

investigating tumor metabolism. Its unique capabilities allow non-

invasive imaging of various metabolic pathways within tumors,

encompassing glycolysis, fumarate metabolism, and telomere-

related pathways. DMI can provide invaluable insights into tumor

biology, treatment response, and prognosis assessment. Moreover, its

potential application in immunotherapy holds the promise of
Frontiers in Oncology 07
evaluating early treatment responses and optimizing therapeutic

strategies. However, it is imperative to recognize that further

research is essential to address challenges related to quantification,

safety, and hardware development. With ongoing advancements,

DMI stands poised to evolve into a convenient and efficient

imaging tool in clinical practice. Its contributions will play a pivotal

role in the advancement of precision medicine and the improvement

of patient outcomes across the spectrum of cancer diagnosis and

treatment evaluation.
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