57 research outputs found
Recommended from our members
Intrauterine programming of obesity and type 2 diabetes
Abstract: The type 2 diabetes epidemic and one of its predisposing factors, obesity, are major influences on global health and economic burden. It is accepted that genetics and the current environment contribute to this epidemic; however, in the last two decades, both human and animal studies have consolidated considerable evidence supporting the ‘developmental programming’ of these conditions, specifically by the intrauterine environment. Here, we review the various in utero exposures that are linked to offspring obesity and diabetes in later life, including epidemiological insights gained from natural historical events, such as the Dutch Hunger Winter, the Chinese famine and the more recent Quebec Ice Storm. We also describe the effects of gestational exposure to endocrine disruptors, maternal infection and smoking to the fetus in relation to metabolic programming. Causal evidence from animal studies, motivated by human observations, is also discussed, as well as some of the proposed underlying molecular mechanisms for developmental programming of obesity and type 2 diabetes, including epigenetics (e.g. DNA methylation and histone modifications) and microRNA interactions. Finally, we examine the effects of non-pharmacological interventions, such as improving maternal dietary habits and/or increasing physical activity, on the offspring epigenome and metabolic outcomes
Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy
Abstract Background Offspring of women with diabetes in pregnancy are at increased risk of type 2 diabetes mellitus (T2DM), potentially mediated by epigenetic mechanisms. The adipokines leptin, adiponectin, and resistin (genes: LEP, ADIPOQ, RETN) play key roles in the pathophysiology of T2DM. We hypothesized that offspring exposed to maternal diabetes exhibit alterations in epigenetic regulation of subcutaneous adipose tissue (SAT) adipokine transcription. We studied adipokine plasma levels, SAT gene expression, and DNA methylation of LEP, ADIPOQ, and RETN in adult offspring of women with gestational diabetes (O-GDM, N = 82) or type 1 diabetes (O-T1DM, N = 67) in pregnancy, compared to offspring of women from the background population (O-BP, N = 57). Results Compared to O-BP, we found elevated plasma leptin and resistin levels in O-T1DM, decreased gene expression of all adipokines in O-GDM, decreased RETN expression in O-T1DM, and increased LEP and ADIPOQ methylation in O-GDM. In multivariate regression analysis, O-GDM remained associated with increased ADIPOQ methylation and decreased ADIPOQ and RETN gene expression and O-T1DM remained associated with decreased RETN expression after adjustment for potential confounders and mediators. Conclusions In conclusion, offspring of women with diabetes in pregnancy exhibit increased ADIPOQ DNA methylation and decreased ADIPOQ and RETN gene expression in SAT. However, altered methylation and expression levels were not reflected in plasma protein levels, and the functional implications of these findings remain uncertain
High Prevalence of Gestational Diabetes Mellitus in Rural Tanzania-Diagnosis Mainly Based on Fasting Blood Glucose from Oral Glucose Tolerance Test
Gestational diabetes mellitus (GDM) is associated with poor pregnancy outcomes and increased long-term risk of metabolic diseases for both mother and child. In Tanzania, GDM prevalence increased from 0% in 1991 to 19.5% in 2016. Anaemia has been proposed to precipitate the pathogenesis of GDM. We aimed to examine the prevalence of GDM in a rural area of Tanzania with a high prevalence of anaemia and to examine a potential association between haemoglobin concentration and blood glucose during pregnancy. The participants were included in a population-based preconception, pregnancy and birth cohort study. In total, 538 women were followed during pregnancy and scheduled for an oral glucose tolerance test (OGTT) at week 32-34 of gestation. Gestational diabetes mellitus was diagnosed according to the WHO 2013 guidelines. Out of 392 women screened, 39% (95% CI: 34.2-44.1) had GDM, the majority of whom (94.1%) were diagnosed based solely on the fasting blood sample from the OGTT. No associations were observed between haemoglobin or ferritin and glucose measurements during pregnancy. A very high prevalence of GDM was found in rural Tanzania. In view of the laborious, costly and inconvenient OGTT, alternative methods such as fasting blood glucose should be considered when screening for GDM in low- and middle-income countries.Peer reviewe
DNA Methylation and Gene Expression in Blood and Adipose Tissue of Adult Offspring of Women with Diabetes in Pregnancy—A Validation Study of DNA Methylation Changes Identified in Adolescent Offspring
Maternal gestational diabetes and obesity are associated with adverse outcomes in offspring, including increased risk of diabetes and cardiovascular diseases. Previously, we identified a lower DNA methylation degree at genomic sites near the genes ESM1, MS4A3, and TSPAN14 in the blood cells of adolescent offspring exposed to gestational diabetes and/or maternal obesity in utero. In the present study, we aimed to investigate if altered methylation and expression of these genes were detectable in blood, as well in the metabolically relevant subcutaneous adipose tissue, in a separate cohort of adult offspring exposed to gestational diabetes and obesity (O-GDM) or type 1 diabetes (O-T1D) in utero, compared with the offspring of women from the background population (O-BP). We did not replicate the findings of lower methylation of ESM1, MS4A3, and TSPAN14 in blood from adults, either in O-GDM or O-T1D. In contrast, in adipose tissue of O-T1D, we found higher MS4A3 DNA methylation, which will require further validation. The adipose tissue ESM1 expression was lower in O-GDM compared to O-BP, which in turn was not associated with maternal pre-pregnancy BMI nor the offspring’s own adiposity. Adipose tissue TSPAN14 expression was slightly lower in O-GDM compared with O-BP, but also positively associated with maternal pre-pregnancy BMI, as well as offspring’s own adiposity and HbA1c levels. In conclusion, the lower DNA methylation in blood from adolescent offspring exposed to GDM could not be confirmed in the present cohort of adult offspring, potentially due to methylation remodeling with increased aging. In offspring adipose tissue, ESM1 expression was associated with maternal GDM, and TSPAN14 expression was associated with both maternal GDM, as well as pre-pregnancy BMI. These altered expression patterns are potentially relevant to the concept of developmental programming of cardiometabolic diseases and require further studies
Mapping the Cord Blood Transcriptome of Pregnancies Affected by Early Maternal Anemia to Identify Signatures of Fetal Programming
Context Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mothers and children. Offspring of women with EP anemia often have low birth weight, which increases risk for cardiometabolic diseases, including type 2 diabetes (T2D), later in life. Objective We aimed to elucidate mechanisms underlying developmental programming of adult cardiometabolic disease, including epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth. Methods We leveraged global transcriptome- and accompanying epigenome-wide changes in 48 UCB from newborns of EP anemic Tanzanian mothers and 50 controls to identify differentially expressed genes (DEGs) in UCB exposed to maternal EP anemia. DEGs were assessed for association with neonatal anthropometry and cord insulin levels. These genes were further studied in expression data from human fetal pancreas and adult islets to understand their role in beta-cell development and/or function. Results The expression of 137 genes was altered in UCB of newborns exposed to maternal EP anemia. These putative signatures of fetal programming, which included the birth weight locus LCORL, were potentially mediated by epigenetic changes in 27 genes and associated with neonatal anthropometry. Among the DEGs were P2RX7, PIK3C2B, and NUMBL, which potentially influence beta-cell development. Insulin levels were lower in EP anemia-exposed UCB, supporting the notion of developmental programming of pancreatic beta-cell dysfunction and subsequently increased risk of T2D in offspring of mothers with EP anemia. Conclusions Our data provide proof-of-concept on distinct transcriptional and epigenetic changes detectable in UCB from newborns exposed to maternal EP anemia.Peer reviewe
N-1-methylnicotinamide is a signalling molecule produced in skeletal muscle coordinating energy metabolism
Obesity is a major health problem, and although caloric restriction and exercise are successful strategies to lose adipose tissue in obese individuals, a simultaneous decrease in skeletal muscle mass, negatively effects metabolism and muscle function. To deeper understand molecular events occurring in muscle during weight-loss, we measured the expressional change in human skeletal muscle following a combination of severe caloric restriction and exercise over 4 days in 15 Swedish men. Key metabolic genes were regulated after the intervention, indicating a shift from carbohydrate to fat metabolism. Nicotinamide N-methyltransferase (NNMT) was the most consistently upregulated gene following the energy-deficit exercise. Circulating levels of N-1-methylnicotinamide (MNA), the product of NNMT activity, were doubled after the intervention. The fasting-fed state was an important determinant of plasma MNA levels, peaking at similar to 18 h of fasting and being lowest similar to 3 h after a meal. In culture, MNA was secreted by isolated human myotubes and stimulated lipolysis directly, with no effect on glucagon or insulin secretion. We propose that MNA is a novel myokine that enhances the utilization of energy stores in response to low muscle energy availability. Future research should focus on applying MNA as a biomarker to identify individuals with metabolic disturbances at an early stage.Peer reviewe
A combined metabolomic and phylogenetic study reveals putatively prebiotic effects of high molecular weight arabino-oligosaccharides when assessed by in vitro fermentation in bacterial communities derived from humans
AbstractPrebiotic oligosaccharides are defined by their selective stimulation of growth and/or activity of bacteria in the digestive system in ways claimed to be beneficial for health. However, apart from the short chain fatty acids, little is known about bacterial metabolites created by fermentation of prebiotics, and the significance of the size of the oligosaccharides remains largely unstudied.By in vitro fermentations in human fecal microbial communities (derived from six different individuals), we studied the effects of high-mass (HA, >1 kDa), low-mass (LA, <1 kDa) and mixed (BA) sugar beet arabino-oligosaccharides (AOS) as carbohydrate sources. Fructo-oligosaccharides (FOS) were included as reference. The changes in bacterial communities and the metabolites produced in response to incubation with the different carbohydrates were analyzed by quantitative PCR (qPCR) and Liquid Chromatography–Mass Spectrometry (LC–MS), respectively.All tested carbohydrate sources resulted in a significant increase of Bifidobacterium spp. between 1.79 fold (HA) and 1.64 fold (FOS) in the microbial populations after fermentation, and LC–MS analysis suggested that the bifidobacteria contributed to decomposition of the arabino-oligosaccharide structures, most pronounced in the HA fraction, resulting in release of the essential amino acid phenylalanine. Abundance of Lactobacillus spp. correlated with the presence of a compound, most likely a flavonoid, indicating that lactobacilli contribute to release of such health-promoting substances from plant structures.Additionally, the combination of qPCR and LC–MS revealed a number of other putative interactions between intestinal microbes and the oligosaccharides, which contributes to the understanding of the mechanisms behind prebiotic impact on human health
Horizontal Inequalities and Domestic Terrorism: A Disaggregated Study of Ethno-Nationalist Terrorism
Recommended from our members
Intrauterine programming of obesity and type 2 diabetes
Abstract: The type 2 diabetes epidemic and one of its predisposing factors, obesity, are major influences on global health and economic burden. It is accepted that genetics and the current environment contribute to this epidemic; however, in the last two decades, both human and animal studies have consolidated considerable evidence supporting the ‘developmental programming’ of these conditions, specifically by the intrauterine environment. Here, we review the various in utero exposures that are linked to offspring obesity and diabetes in later life, including epidemiological insights gained from natural historical events, such as the Dutch Hunger Winter, the Chinese famine and the more recent Quebec Ice Storm. We also describe the effects of gestational exposure to endocrine disruptors, maternal infection and smoking to the fetus in relation to metabolic programming. Causal evidence from animal studies, motivated by human observations, is also discussed, as well as some of the proposed underlying molecular mechanisms for developmental programming of obesity and type 2 diabetes, including epigenetics (e.g. DNA methylation and histone modifications) and microRNA interactions. Finally, we examine the effects of non-pharmacological interventions, such as improving maternal dietary habits and/or increasing physical activity, on the offspring epigenome and metabolic outcomes
- …