461 research outputs found

    Haplotype Association Mapping Identifies a Candidate Gene Region in Mice Infected With Staphylococcus aureus

    Get PDF
    Exposure to Staphylococcus aureus has a variety of outcomes, from asymptomatic colonization to fatal infection. Strong evidence suggests that host genetics play an important role in susceptibility, but the specific host genetic factors involved are not known. The availability of genome-wide single nucleotide polymorphism (SNP) data for inbred Mus musculus strains means that haplotype association mapping can be used to identify candidate susceptibility genes. We applied haplotype association mapping to Perlegen SNP data and kidney bacterial counts from Staphylococcus aureus-infected mice from 13 inbred strains and detected an associated block on chromosome 7. Strong experimental evidence supports the result: a separate study demonstrated the presence of a susceptibility locus on chromosome 7 using consomic mice. The associated block contains no genes, but lies within the gene cluster of the 26-member extended kallikrein gene family, whose members have well-recognized roles in the generation of antimicrobial peptides and the regulation of inflammation. Efficient mixed-model association (EMMA) testing of all SNPs with two alleles and located within the gene cluster boundaries finds two significant associations: one of the three polymorphisms defining the associated block and one in the gene closest to the block, Klk1b11. In addition, we find that 7 of the 26 kallikrein genes are differentially expressed between susceptible and resistant mice, including the Klk1b11 gene. These genes represent a promising set of candidate genes influencing susceptibility to Staphylococcus aureus

    Multidisciplinary teams, and parents, negotiating common ground in shared-care of children with long-term conditions: A mixed methods study

    Get PDF
    Background: Limited negotiation around care decisions is believed to undermine collaborative working between parents of children with long-term conditions and professionals, but there is little evidence of how they actually negotiate their respective roles. Using chronic kidney disease as an exemplar this paper reports on a multi-method study of social interaction between multidisciplinary teams and parents as they shared clinical care. Methods. Phases 1 and 2: a telephone survey mapping multidisciplinary teams' parent-educative activities, and qualitative interviews with 112 professionals (Clinical-psychologists, Dietitians, Doctors, Nurses, Play-specialists, Pharmacists, Therapists and Social-workers) exploring their accounts of parent-teaching in the 12 British children's kidney units. Phase 3: six ethnographic case studies in two units involving observations of professional/parent interactions during shared-care, and individual interviews. We used an analytical framework based on concepts drawn from Communities of Practice and Activity Theory. Results: Professionals spoke of the challenge of explaining to each other how they are aware of parents' understanding of clinical knowledge, and described three patterns of parent-educative activity that were common across MDTs: Engaging parents in shared practice; Knowledge exchange and role negotiation, and Promoting common ground. Over time, professionals had developed a shared repertoire of tools to support their negotiations with parents that helped them accomplish common ground during the practice of shared-care. We observed mutual engagement between professionals and parents where a common understanding of the joint enterprise of clinical caring was negotiated. Conclusions: For professionals, making implicit knowledge explicit is important as it can provide them with a language through which to articulate more clearly to each other what is the basis of their intuition-based hunches about parents' support needs, and may help them to negotiate with parents and accelerate parents' learning about shared caring. Our methodology and results are potentially transferrable to shared management of other conditions. © 2013 Swallow et al.; licensee BioMed Central Ltd

    Fully human agonist antibodies to TrkB using autocrine cell-based selection from a combinatorial antibody library

    Get PDF
    The diverse physiological roles of the neurotrophin family have long prompted exploration of their potential as therapeutic agents for nerve injury and neurodegenerative diseases. To date, clinical trials of one family member, brain-derived neurotrophic factor (BDNF), have disappointingly failed to meet desired endpoints. Contributing to these failures is the fact that BDNF is pharmaceutically a nonideal biologic drug candidate. It is a highly charged, yet is a net hydrophobic molecule with a low molecular weight that confers a short t1/2 in man. To circumvent these shortcomings of BDNF as a drug candidate, we have employed a function-based cellular screening assay to select activating antibodies of the BDNF receptor TrkB from a combinatorial human short-chain variable fragment antibody library. We report here the successful selection of several potent TrkB agonist antibodies and detailed biochemical and physiological characterization of one such antibody, ZEB85. By using a human TrkB reporter cell line and BDNF-responsive GABAergic neurons derived from human ES cells, we demonstrate that ZEB85 is a full agonist of TrkB, comparable in potency to BDNF toward human neurons in activation of TrkB phosphorylation, canonical signal transduction, and mRNA transcriptional regulation

    Data Assimilation Enhancements to Air Force Weathers Land Information System

    Get PDF
    The United States Air Force (USAF) has a proud and storied tradition of enabling significant advancements in the area of characterizing and modeling land state information. 557th Weather Wing (557 WW; DoDs Executive Agent for Land Information) provides routine geospatial intelligence information to warfighters, planners, and decision makers at all echelons and services of the U.S. military, government and intelligence community. 557 WW and its predecessors have been home to the DoDs only operational regional and global land data analysis systems since January 1958. As a trusted partner since 2005, Air Force Weather (AFW) has relied on the Hydrological Sciences Laboratory at NASA/GSFC to lead the interagency scientific collaboration known as the Land Information System (LIS). LIS is an advanced software framework for high performance land surface modeling and data assimilation of geospatial intelligence (GEOINT) information

    Using focused ethnography in paediatric settings to explore professionals' and parents' attitudes towards expertise in managing chronic kidney disease stage 3-5

    Get PDF
    © 2014 Nightingale et al.; licensee BioMed Central Ltd. Background: Interactions between parents and healthcare professionals are essential when parents of children with chronic conditions are learning to share expertise about clinical care, but limited evidence exists on how they actually interact. This paper discusses the use of focused ethnography in paediatric settings as an effective means of exploring attitudes towards expertise. Methods: The paper draws on repeated observations, interviews and field-notes involving the parents of six children with chronic kidney disease, and 28 healthcare professionals at two, tertiary, children's hospital-based units. Data were analysed using the Framework approach and the concepts of expertise and self-management. Results: Our study highlighted rewards and challenges associated with focused ethnography in this context. Rewards included the ability to gain a richer understanding of the complex phenomena of mutual acknowledgement of expertise that occurs during parent/ healthcare professional interactions. Challenges related to gaining informed consent and ensuring potential participants had an adequate understanding of the purpose of the study. Two dimensions of parental expertise around their child (personal and clinical) were evident in our data. Parents' and professionals' expertise about the child and their condition was acknowledged and exchanged as parents learnt to share clinical-care with the multi-disciplinary team. Healthcare professionals acknowledged parents' need to understand aspects of each of the eight disciplinary knowledge bases relating to their child' s management and recognised parents' expert knowledge of their child, found ways to mobilise this knowledge, and wove parents' expertise into the management plan. Parents spoke of the degree to which their own expert knowledge of their child complemented healthcare professionals' clinical knowledge. However, ambivalence around expertise was evident as both parents and healthcare professionals questioned what the expertise was, and who the expert was. Our discussion focuses on the ways healthcare professionals and parents share expertise around the child's condition as parents take on responsibility for home-based clinical care. Conclusions: Our findings point to focused ethnography being an effective way of capturing new insights into parent and professional interactions in a paediatric setting and mutual acknowledgement of expertise; these insights may help redress the reported limitations of previous, retrospective studies

    Heterogeneity in diagnostic characters across ecoregions: A case study with Botrynema (Hydrozoa: Trachylina: Halicreatidae)

    Get PDF
    IntroductionBotrynema, a genus of medusozoans in the trachyline family Halicreatidae, currently contains two species: B. brucei and B. ellinorae, distinguished by the presence or absence, respectively, of an apical knob as a diagnostic character. However, no study has corroborated if these taxonomic diagnoses have a biological and evolutionary basis. Therefore, in this study we attempted to address the question “do the two nominal species in the genus Botrynema represent independent phylogenetic lineages, or two phenotypic variants of a single species?MethodsIn this study we took advantage of legacy collections from different research expeditions across the globe from 2000 to 2021 to study the phylogenetics and taxonomy of the genus Botrynema.ResultsB. brucei and B. ellinorae present partially overlapping vertical distributions in the Arctic and as a whole in the Arctic the genus seems to be limited to the Atlantic water masses. The phylogenetic reconstruction based on the concatenated alignment corroborates the validity of the family Halicreatidae and of genus Botrynema as monophyletic groups. However no clear differentiation was found between the two presently accepted species, B. ellinorae and B. brucei.DiscussionBased on the evidence we gathered, we conclude that while the genus Botrynema does contain at least two species lineages, these lineages are not concordant with current species definitions. The species B. ellinorae is reassigned as a subspecies of B. brucei and diagnostic characters are provided

    Study of Upsilon(3S,2S) -> eta Upsilon(1S) and Upsilon(3S,2S) -> pi+pi- Upsilon(1S) hadronic trasitions

    Get PDF
    We study the Upsilon(3S,2S)->eta Upsilon(1S) and Upsilon(3S,2S)->pi+pi- Upsilon(1S) transitions with 122 million Upsilon(3S) and 100 million Upsilon(2S) mesons collected by the BaBar detector at the PEP-II asymmetric energy e+e- collider. We measure B[Upsilon(2S)->eta Upsilon(1S)]=(2.39+/-0.31(stat.)+/-0.14(syst.))10^-4 and Gamma[Upsilon(2S)->eta Upsilon(1S)]/Gamma[Upsilon(2S)-> pi+pi- Upsilon(1S)]=(1.35+/-0.17(stat.)+/-0.08(syst.))10^-3. We find no evidence for Upsilon(3S)->eta Upsilon(1S) and obtain B[Upsilon(3S)->eta Upsilon(1S)]<1.0 10^-4 and Gamma[Upsilon(3S)->eta Upsilon(1S)]/Gamma[Upsilon(3S)->pi+pi- Upsilon(1S)]<2.3 10^-3 as upper limits at the 90% confidence level. We also provide improved measurements of the Upsilon(2S) - Upsilon(1S) and Upsilon(3S) - Upsilon(1S) mass differences, 562.170+/-0.007(stat.)+/-0.088(syst.) MeV/c^2 and 893.813+/-0.015(stat.)+/-0.107(syst.) MeV/c^2 respectively.Comment: 8 pages, 16 encapsulated postscript figures, submitted to Phys.Rev.

    Further clinical and molecular delineation of the 15q24 microdeletion syndrome

    Get PDF
    Background Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis. Aim To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients. Methods Breakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient. Results Nine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8-10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome. Conclusion The molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1-Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screenin

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures
    corecore